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Big Picture

e Supervised Learning
— Classification

* Input x: feature vector
e Output: discrete class label
— Regression

* Input x: feature vector
e Outputy: continuous value



Classification Tasks

Diagnosing sickle
cell anemia

Tax Fraud Detection

Web Classification

Predict squirrel hill
resident

Features, X

Refund Marital Taxable
Status Income
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Drive to CMU, Rachel’s fan,
Shop at SH Giant Eagle

Labels, Y

Anemic cell
= Healthy cell

=
?
Sports
> Science
News
= Resident

Not resident



Classification

Goal: Construct a predictor f: X — Y to minimize
a risk (performance measure) R(f)

Sports

C> Science

News

Features, X Labels, Y

R(f) =P(f(X)#Y) Probability of Error



Classification

Optimal predictor: f*=argmin P(f(X) #Y)
(Bayes classifier) i

P(Y =« |X) =)
* ] P(Y:.|X)>P(YZQ|X)
F= { ¢ otherwise

Depends on unknown distribution Pxy




Discrete to Continuous Labels

Classification

Sports = Anemic cell
> Science O Healthy cell
News 7™
X = Document Y = Topic X = Cell Image Y = Diagnosis

Regression
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Regression

What is the equivalent of Bayes-optimal
classifier?

How about if we can model P(Y|X)?

How can we predict Y given new X?

We need a LOSS function

— How about square loss?
— What should be the prediction?



Regression (See board)

Optimal predictor: f*=argminE[(f(X) —Y)?]
(Conditional Mean) J

R(f) =Exy[(F(X) —-Y)?] = Ex[Eyx[(f(X) — Y)2|X]]
o eon! comenience = E[E[(f(X) — E[Y|X] + E[Y|X] - Y)*|X]]

E[ E[(f(X) - E[Y|X])*|X]
- +2E[(f(X) — E[Y [X]))(E[Y|X] - Y)|X]
+E((E[Y|X] - Y)*X]]

E[ E[(f(X) - E[Y|X])?/X]
_ +2(f(X) — E[Y|X]) % 0
+E[(EY|X] - Y)?[X)

= E[(f(X) - E[Y|X])’] + R(f").
Thus R(f) = R(f*) for any prediction rule f, and therefore R* = R(f*).



Models

* So how can we proceed?

* We need to make some assumption to model
P(Y|X)
— Linear form (basis function)
— Noise distribution
— Loss function
— Etc.



Regression algorithms

Training data :> Learning algorithm :> Prediction rule
(X, Yy fn

Linear Regression

Lasso, Ridge regression (Regularized Linear Regression)
Nonlinear Regression

Kernel Regression

Regression Trees, Splines, Wavelet estimators, ...

" 1
Empirical Risk Minimizer:  f, = arg mjin =3 (F(X) — V)2
"i=1

|_'_l

Empirical mean
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Least Squares Estimator (on board)
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Vector Derivative (see notes from
website)

* Some useful facts: assume that A is symmetric

v. Fx=a

v Fa=a

V, ;x = A

vk Ax =2Ax

v A-x)T A(A-x) =—2A(A-x)
vV, ITX:: 2X



Probabilistic Interpretation: MLE

Intuition: Signal plus (zero-mean) Noise model

Y =f"(X)+e=XB"+e e ~ N(0,0°T)
Y ~ N (X%, 0°T)

BuLe = arg mﬁaxlog p({(X;, Y)Y q|B, o)
\

)

Y
log likelihood

n
= argmin Y (XiB-Y)? =5
=1

Least Square Estimate is same as Maximum Likelihood Estimate under a
Gaussian model ! 13



Variations

 What if the noise terms are independent but
not identical?

— Homework
 What if they are |ID but not Gaussian?

* Think about robustness
— What if we have outliers?



Robustness

* The best fit from a quadratic * Butthis is probably better ...
regression




Regularized Least Squares and MAP

What if (AT A) is not invertible ?

Bumap = arg maxlog p({(X;, Y;) 1|8, 0%)+log p(B)
\ ] |\ |

Y
log likelihood log prior

|) Gaussian Prior

8 ~ N(0,721) p(B) o e~ /27
o) = 2 2
Bmap = arg mﬁ@n > (Y — XiB8)° + MIBl5 Ridge Regression
=1
Closed form: HW constant(c?,72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” B 16




Regularized Least Squares and MAP

What if (AT A) is not invertible ?

Buae = arg maxlog p({(X;, Y }i=1]8, o%) +log p(8)
\ )\ J
Y
log likelihood log prior

Il) Laplace Prior

B; i Laplace(0,t) p(B;) e~ 1Gil/t
Bumap = arg mﬁin > (Y= X:8)° + M8l Lasso
1=1
Closed form: HW constant(c?,t)

Prior belief that B is Laplace with zero-mean biases solution to “small” 17




Ridge Regression vs Lasso
min(AS — Y)" (A8 — Y) + Apen(8) = min J(5) + Apen(5)

Ridge Regression: Lasso: HOT!
pen(8) = [|8I5 pen(B) = |51

Bs with constant J(8)
(level sets of J(B))

s with B2
constant

|2 norm \[
N

Lasso (I11 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems — don’t have to store all coordinates! 18

s with
constant
|1 norm




Case study:
predicting gene expression

The genetic picture

causal SNPs

CGT TGTACAATTT

a univariate phenotype:

i.e., the expression intensity of
a gene

© Fric Xine @ CMLl] 2006-200KR
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Association Mapping as Regression

Phenotype (BMI) Genotype
o C..... T..Cl..... T
Individual 1 2.5
C..... A..C....... T
o G..... A..GhL...... A
Individual 2 4.8
C..... T..C....... T
Individual N 4.7 N C T..C..L.... T...
.G ..... T..GL...... T...
Benign SNPs Causal SNP

© Fric Xine @ CML] 2006-200K
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Association Mapping as Regression

Phenotype (BMI) Genotype
Individual 1 2.5 0. ... 1..0....... 0..
Individual 2 4.8 R 1..1....... 1..
Individual N 4.7 L2 2..1....... 0..

Yi

[
N g
=25
=

© Fric Xine @ CML] 2006-200K

SNPs with large
|6;] are relevant
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Experimental setup

 Asthama dataset
— 543 individuals, genotyped at 34 SNPs

— Diploid data was transformed into 0/1 (for homozygotes) or 2 (for
heterozygotes)

— X=543x34 matrix
— Y=Phenotype variable (continuous)

* Asingle phenotype was used for regression

* Implementation details
— lterative methods: Batch update and online update implemented.

— For both methods, step size a is chosen to be a small fixed value (10%).
This choice is based on the data used for experiments.

— Both methods are only run to a maximum of 2000 epochs or until the
change in training MSE is less than 10-4



Mean Square Error on training data

Convergence Curves

Log-log plot of tramlng MSE versus epochs

10 ;
: _BatCh update ] * For the batch method,
—Online update ] the training MSE is
- ___Minimum MSE by ; initially large due to
108! normal equation || uninformed
: initialization

* In the online update, N
updates for every
epoch reduces MSE to
a much smaller value.

————

10° 10
Epochs

4
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Value of regression coefficient p.

The Learned Coefficients

Stem plot of regression coefficents p's
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Performance vs. Training Size

Variation of Test mean square error with percentage of data used for training

2000 ] . 1 . ] . : ; :
—Batch update
—Normal equation

*g —Online update
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e The results from B and O

update are almost identical.
So the plots coincide.

e The test MSE from the

normal equation is more
than that of B and O during
small training. This is
probably due to overfitting.

In B and O, since only 2000
iterations are allowed at
most. This roughly acts as a
mechanism that avoids
overfitting.
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