
10-701 Machine Learning, Fall 2012: Homework 1

Due 9/26 at the beginning of class.

1 Decision Trees, [25pt, Martin]

1. [10 points] As of September 2012, 800 extrasolar planets have been identified in our galaxy.
Super-secret surveying spaceships sent to all these planets have established whether they are
habitable for humans or not, but sending a spaceship to each planet is expensive. In this
problem, you will come up with decision trees to predict if a planet is habitable based only
on features observable using telescopes.

(a) In Table 1 you are given the data from all 800 planets surveyed so far. The features
observed by telescope are Size (“Big” or “Small”), and Orbit (“Near” or “Far”). Each
row indicates the values of the features and habitability, and how many times that set
of values was observed. So, for example, there were 20 “Big” planets “Near” their star
that were habitable. Derive and draw the decision tree learned by ID3 on this data
(use the maximum information gain criterion for splits, don’t do any pruning). Make
sure to clearly mark at each node what attribute you are splitting on, and which value
corresponds to which branch. By each leaf node of the tree, write in the number of
habitable and inhabitable planets in the training data (i.e. the data in Table 1) that
belong to that node.

(b) For just 9 of the planets, a third feature, Temperature (in Kelvin), has been measured, as
shown in Table 2. Redo all the steps from part (a) on this data using all three features.
For the Temperature feature, in each iteration you must maximize over all possible
binary thresholding splits (such as T ≤ 250 v.s. T > 250, for example). According to
your decision tree, would a planet with the features (Big, Near, 280) be predicted to be
habitable or not habitable?

Table 1: Planet size and orbit vs. habitability.
Size Orbit Habitable Count

Big Near Yes 20

Big Far Yes 170

Small Near Yes 139

Small Far Yes 45

Big Near No 130

Big Far No 30

Small Near No 11

Small Far No 255

1



Table 2: Planet size, orbit, and temperature vs. habitability.
Size Orbit Temperature Habitable

Big Far 205 No

Big Near 205 No

Big Near 260 Yes

Big Near 380 Yes

Small Far 205 No

Small Far 260 Yes

Small Near 260 Yes

Small Near 380 No

Small Near 380 No

2. [15 points] In this problem you’ll see why simple feature-wise (i.e. coordinate-wise) splitting
of the data isn’t always the best approach to classification. Throughout the problem, assume
that each feature can be used for splitting the data multiple times in a decision tree. Suppose
you are given n non-overlapping points in the unit square [0, 1]× [0, 1], each labeled either +
or −.

(a) Prove that there exists a decision tree of depth at most log2 n that correctly labels all
n points. At each node the decision tree should only perform a binary threshold split
on a single coordinate. (Note that a binary tree of depth log2 n can have as many as
2log2 n = n internal nodes, i.e. splits.)

(b) Describe (either mathematically, or in a few concise sentences) a set of n points in
[0, 1]× [0, 1], along with corresponding + or − labels, so that the smallest decision tree
that correctly labels them all has at least n−1 splits. (Hint: if you can do it with n = 3,
you can do it with arbitrary n.)

(c) Describe n points and corresponding labels that, as in part (b), can only be correctly
labeled by a tree with at least n− 1 splits, with the additional condition that the points
labeled + and the points labeled − must be separable by a straight line. In other words,
there must exist a line segment splitting the unit square in two (not necessarily parallel
to either axis), so that all points labeled + are in one part, and all points labeled − are
in the other. (You will soon see classifiers that would have had a much easier time with
this type of data.)

2 Maximum Likelihood Estimation, [25pt, Avi]

Figure 2 shows a system S which takes two inputs x1, x2 (which are deterministic ) and outputs a
linear combination of those two inputs, c1x1+c2x2, introduces an additive error ε which is a random
variable following some distribution. Thus the output y that you observe is given by equation 1.
Assume that you have n > 2 instances < xj1, xj2, yj >j=1,...,n or equivalently < xj , yj >, where
xj = [xj1, xj2].

y = c1x1 + c2x2 + ε (1)

In other words having n equations in your hand is equivalent to having n equations of the
following form: yj = c1xj1 + c2xj2 + εj , j = 1 . . . n. The goal is to estimate c1, c2 from those
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Figure 1: Exercise 2

measurements by maximizing conditional log-likelihood given the input, under different assumptions
for the noise. Specifically:

1. [10 points] Assume that the εi for i = 1 . . . n are iid Gaussian random variables with zero
mean and variance σ2.

(a) Find the conditional distribution of each yi given the inputs

(b) Compute the loglikelihood of y given the inputs.

(c) Maximixe the likelihood above to get cls

2. [10 points] Assume that the εi for i = 1 . . . n are independent Gaussian random variable
with zero mean and variance V ar(εi) = σi.

(a) Find the conditional distribution of each yi given the inputs

(b) Compute the loglikelihood of y given the inputs.

(c) Maximixe the likelihood above to get cwls

3. [5 points] Assume that εi for i = 1 . . . n has density fεi(x) = f(x) = 1
2b exp(− |x|b ). In other

words our noise is iid following Laplace distribution with location parameter µ = 0 and scale
parameter b.

(a) Find the conditional distribution of each yi given the inputs

(b) Compute the loglikelihood of y given the inputs.

(c) Comment on why this model leads to more robust solution.

3 Naive Bayes vs Logistic Regression, [25pt, Derry]

In this problem you will implement Naive Bayes and Logistic Regression, and compare their perfor-
mance on a classification task. The data for this task is given (http://www.cs.cmu.edu/ epxing/Class/10701/hw1-
data.txt). The data is comma-separated (no header), with the first column being the class name.
There are 2 classes: A and B, and 16 features. Each feature can take a value: 1, 2, or 3.

1. [3 points] Provide descriptions of Naive Bayes and Logistic Regression algorithms for the
dataset above, deriving
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(a) P (Y = A|X1...X16) and P (Y = B|X1...X16)

(b) how to classify a new example (i.e. the classification rule)

(c) how to estimate the model parameters

Note: you only need to derive the equation, no need to plug in the actual values.

2. [5 points] In class, we showed that logistic regression is the discriminative counterpart to
a Gaussian Naive Bayes classifier for continuous data. Consider the case where each Xi

is boolean. Prove also for this case that P (Y |X) in logistic regression follows the same
form (and hence that Logistic Regression is also the discriminative counterpart to a Naive
Bayes with Boolean features). Hint: represent P (Xi|Y = A) = θXi

iA (1 − θiA)1−Xi , where
θiA = P (Xi = 1|Y = A) and hence 1− θiA = P (Xi = 0|Y = A).

3. [4 points] Since Logistic Regression is the discriminative counterpart to a Gaussian Naive
Bayes (we showed in class that the parameters wi in Logistic Regression can be expressed in
terms of the Gaussian Naive Bayes parameters), then

(a) asymptotically (as the number of training examples grows toward infinity), do you think
Logistic Regression and the Gaussian Naive Bayes will converge toward identical classi-
fiers? Comment on why.

(b) Naive Bayes has the assumption of conditional independence and may not work well
when the data violates this assumption. Do you think Logistic Regression also faces this
problem? If not, why?

4. [10 points] Implement Logistic Regression and Naive Bayes for the dataset above. Use add-
one smoothing when estimating the parameters of your Naive Bayes classifier. For logistic
regression, use a step size around .0001. To train and test, follow these steps:

(a) Randomly split dataset into 2/3 training set, 1/3 testing set.

(b) Choose a random subset of the training data to train, with training sizes m from 2 to
200 (with an increment of 1 or close to 1).

(c) After training each subset, test against the held-out testing set. Calculate the classifi-
cation error as the ratio of incorrectly classified to the total testing set size.

(d) Repeat 100 times from beginning, averaging the classification error over the 100 runs.

(e) Plot the average error vs. the training sizes m, comparing Logistic Regression and Naive
Bayes.

Submit your code online. Submit your printed plot along with your homework.

5. [3 points] Which model performs better:

(a) at the beginning when there is little training data?

(b) as there are more data?

(c) which model would you prefer when there is little training data and which do you prefer
when there is more training data and why? (Hint: Naive Bayes and Logistic Regression
converge toward their asymptotic accuracies at different rates. Naive Bayes converge
toward their asymptotic values in order n = log d examples, where d is the dimension
of X. Logistic regression converges more slowly, in order n = d examples)
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