
10-701 Machine Learning, Fall 2012: Homework 1 Solutions

1 Decision Trees, [25pt, Martin]

1. [10 points]

(a) For the first split, there are two possibilities to consider – either we split on Size=“Big”
v.s. Size=“Small”, or Orbit=“Near” v.s. Orbit=“Far”. Let’s calculate the corresponding
conditional entropies. For brevity, we define

g(p) = p log2
1

p
+ (1− p) log2

1

1− p

for 0 ≤ p ≤ 1, where we use the convention that 0 log2
1
0 = 0. Then we have

H(Habitable|Size) =P (Size = Big)H(Habitable|Size = Big)

+ P (Size = Small)H(Habitable|Size = Small)

=P (Size = Big)g[P (Habitable = Yes|Size = Big)]

+ P (Size = Small)g[P (Habitable = Yes|Size = Small)]

=
350

800
g

[
190

350

]
+

450

800
g

[
184

450

]
=0.9841298

and

H(Habitable|Orbit) =P (Orbit = Near)H(Habitable|Orbit = Near)

+ P (Orbit = Far)H(Habitable|Orbit = Far)

=P (Orbit = Near)g[P (Habitable = Yes|Orbit = Near)]

+ P (Orbit = Far)g[P (Habitable = Yes|Orbit = Far)]

=
300

800
g

[
159

300

]
+

500

800
g

[
215

500

]
=0.99016

So we see that the first split must be on Size. We do not need to make any further
calculations for the two remaining subtrees, since clearly both must be split on Orbit.
The final tree is given in Figure 1.

(b) Upon careful examination, the reader may notice that Temperature only takes three
unique values in the given data set. Recall that we are only considering splits on
this feature that can be expressed in the form of a threshold (Temperature ≤ T0 v.s.
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Figure 1: The decision tree for 1.1(a).

Temperature > T0). Hence, along with the binary splits on Size and Orbit, we also must
consider two possible splits on Temperature, which can be written as

Temperature ≤ 205 v.s. Temperature > 205

and
Temperature ≤ 260 v.s. Temperature > 260.

We will refer to the resulting binary features as Temperature205 and Temperature260,
respectively. (It is important to note that these are not the only splits one might con-
sider based on this data set. For example, we could have defined the first split to be
Temperature ≤ 240 v.s. Temperature > 240. While this would not affect the over-
all shape of the tree, it might affect how we later classify data points with values for
Temperature that were not observed in the training set.)

Thus for the first split in the tree we have

H(Habitable|Size) =
4

9
g

[
2

4

]
+

5

9
g

[
2

5

]
=0.9838614,

H(Habitable|Orbit) =
3

9
g

[
1

3

]
+

6

9
g

[
3

6

]
=0.9727653,

H(Habitable|Temperature205) =
3

9
g

[
0

3

]
+

6

9
g

[
4

6

]
=0.6121972,

and finally

H(Habitable|Temperature260) =
6

9
g

[
3

6

]
+

3

9
g

[
1

3

]
=0.9727653
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so the best choice for the first split is clearly Temperature205. Furthermore we see that
when Temperature205 = true, the labels in the available data are constant (no habitable
planets), so we do not continue splitting on that side of the tree. The remaining data
set for Temperature205 = false is given in Table 1.

Table 1: Planet size, orbit, and temperature vs. habitability.
Size Orbit Temperature260 Habitable

Big Near true Yes

Big Near false Yes

Small Far true Yes

Small Near true Yes

Small Near false No

Small Near false No

The conditional entropies are

H(Habitable|Size,Temperature205 = false) =
2

6
g

[
2

2

]
+

4

6
g

[
2

4

]
=2/3,

H(Habitable|Orbit,Temperature205 = false) =
5

6
g

[
3

5

]
+

1

6
g

[
1

1

]
=0.8091255,

and

H(Habitable|Temperature260,Temperature205 = false) =
3

6
g

[
3

3

]
+

3

6
g

[
1

3

]
=0.4591479

so the best split is on Temperature260.

The subtree corresponding to Temperature260 = true is not amenable to further splitting.
As for the data in the subtree with Temperature260 = false, we see that the Orbit feature
cannot be split on further since it only takes on the value “Near”. A split on Size,
however, perfectly classifies the remaining planets. So we can immediately conclude
that the final tree looks like Figure 2. According to this tree, the (Big, Near, 280)
example would be classified as habitable.

2. [15 points]

(a) This is true simply by virtue of the fact that with each split we can reduce the number
of remaining points by a factor of 2, hence at the leaves of the complete tree we can have
exactly one data point remaining which can be classified as needed.

(b) Let (x1, y1),...,(xn, yn) such that xi = i/n and yi = 0 for all i = 1, ..., n. Let the labels
be + for all odd-indexed points, and − for all even-indexed points. A simple inductive
argument shows why these points cannot be perfectly classified with less than n − 1
splits.
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Figure 2: The decision tree for 1.1(b).

(c) Let xi =
2d i

2e−1
n and yi =

2b i
2c
n , with odd-indexed points labeled +. For n = 10, these

points are plotted in Figure 3. Clearly these points can be easily separated by a linear
decision boundary such as those given by logistic regression or SVM’s, but a decision
tree splitting only on one coordinate at a time will not be effective.
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Figure 3: An illustration of the points in 1.2(c).
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Figure 4: Exercise 2

2 Maximum Likelihood Estimation, [25pt, Avi]

Figure 2 shows a system S which takes two inputs x1, x2 (which are deterministic ) and outputs a
linear combination of those two inputs, c1x1+c2x2, introduces an additive error ε which is a random
variable following some distribution. Thus the output y that you observe is given by equation 1.
Assume that you have n > 2 instances < xj1, xj2, yj >j=1,...,n or equivalently < xj , yj >, where
xj = [xj1, xj2].

y = c1x1 + c2x2 + ε (1)

In other words having n equations in your hand is equivalent to having n equations of the
following form: yj = c1xj1 + c2xj2 + εj , j = 1 . . . n. The goal is to estimate c1, c2 from those
measurements by maximizing conditional log-likelihood given the input, under different assumptions
for the noise. Specifically:

1. [10 points] Assume that the εi for i = 1 . . . n are iid Gaussian random variables with zero
mean and variance σ2.

(a) Find the conditional distribution of each yi given the inputs

Ans: yi ∼ N(c1xj1 + c2xj2, σ
2)

(b) Compute the loglikelihood of y given the inputs.

Ans: Since the noise are iid, the likelihood function is given by

L(c1, c2) =

n∏
i=1

1√
2πσ

exp
(yi − c1xj1 − c2xj2)2

2σ2

Taking the logarithm we get the loglikelihood function which is a function of the two
unknown parameters c1, c2:

l(c1, c2) = − 1

2σ2

n∑
i=1

(yi− c1xj1 − c2xj2)2

(c) Maximixe the likelihood above to get cls
Ans: Let y ∈ Rn be the vector containing the measurements, X the n× 2 matrix with
Xij = xij and c = [c1, c2]

T then we are trying to minimize ‖y − Xc‖22 resulting in a
solution c = (XTX)−1XT y
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2. [10 points] Assume that the εi for i = 1 . . . n are independent Gaussian random variable
with zero mean and variance V ar(εi) = σi.

(a) Find the conditional distribution of each yi given the inputs

Ans: yi ∼ N(c1xj1 + c2xj2, σ
2
i )

(b) Compute the loglikelihood of y given the inputs.

Ans: Similar as before

l(c1, c2) = −
n∑
i=1

(yi − c1xj1 − c2xj2)2

2σ2i

Ans: Now we are trying to minimize ‖W (y−Xc)‖2 where W is a diagonal matrix with
wii = 1

σi
resulting is solution c = (XTW TWX)−1XTW TWy

(c) Maximixe the likelihood above to get cwls

3. [5 points] Assume that εi for i = 1 . . . n has density fεi(x) = f(x) = 1
2b exp(− |x|b ). In other

words our noise is iid following Laplace distribution with location parameter µ = 0 and scale
parameter b.

(a) Find the conditional distribution of each yi given the inputs

(b) Compute the loglikelihood of y given the inputs.

Ans:

l(c1, c2) = −1

b

n∑
i=1

‖y −Xc‖1

(c) Comment on why this model leads to more robust solution.

Ans: It is prepared to see higher values of residuals because it has a larger tail. Thus
is more robust to noise and outliers
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