
10-701 Machine Learning, Fall 2012: Homework 2

Due Monday 10/29 at the beginning of class.

Instructions: Remember to submit your solution to each problem separately in different piles on
the table at the front of the classroom at the beginning of class on the day the homework is due.
At the top of the first page of each solution you hand in, clearly write the class number (10701), the
number of the problem (i.e. “Problem 1”, “Problem 2”, etc.), your first and last name (assuming
you have both), and your Andrew ID.

1 Learning with L1 norm (Avi)[25 pts]

Suppose you want to predict an unknown value Y ∈ R, but you are only given a sequence of noisy
observations x1, . . . , xn of Y with iid noise (xi = Y + εi).

We have seen in the last homework, that if we assume the noise is i.i.d. Gaussian(εi ∼ N(0, σ2)),
finding the maximum likelihood estimate for Y is equivalent to finding the value ŷ which minimizes
the sum of the least square errors to the x’s. That is to say

ŷ = arg min
y

n∑
i=1

(y − xi)2 (1)

And there is a simple closed form solution:

ŷ =
1

n

n∑
i=1

xi (2)

It was also suggested that if we assume that the noise is i.i.d. Laplace (εi ∼ Laplace(0, b)) with
pdf

fεi(x) =
1

2b
exp

(
−|x|
b

)
(3)

we end up with a maximum likelihood estimator that is in some sense more robust. We will show
this more rigorously in this part.

1 [2 pts] Begin by showing that finding the MLE for Y, assuming Laplace noise, is equivalent
to finding the value ŷ that minimizes the sum of absolute error. That is

L(y) =
n∑
i=1

|y − xi| (4)

ŷ = arg min
y
L(y) (5)

1



2 [4 pts] A standard way to minimize a loss function is to take the derivative and set it to zero.
This loss function is not directly differentiable. However, it is easy to see that the function is
not differentiable only where y has same value as any of the x’s.

Assume that the x’s are distinct and are sorted in ascending order (∀i,∀j > i, xj > xi).

Find an expression for the gradient dL(y)
dy under the constraint that y lies between two con-

secutive values of x (That is to say xi < y < xi+1). (Hint: You may have to consider x’s
which are > y separately from the x’s which are < y)

3 [3 pts] Assuming that there are an even number of x’s, what are all the values of y for which
dL(y)
dy = 0?

4 [3 pts] If we have an odd number of x’s, there is no value of y where dL(y)
dy = 0. However there

is a y0 such that dL(y)
dy < 0 if y < y0 and dL(y)

dy > 0 if y > y0. What is y0?

5 [4 pts] Your answer in the last two parts are therefore the solution to ŷ. Give an explanation of
what the solution represents (Hint: Its either mean, median or mode). Give a brief explanation
why this solution may be more robust against outlier in the data (as compared to least square
errors).

Now we will see the how L1 penalty leads to feature selection. You are given a set of points and
the corresponding outputs: D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and yi ∈ R for i = 1, . . . , n.
You want to use this data to train a linear predictor y = wTF (x) where wT = (w1, . . . , wK) and
F (x)T = (f1(x), . . . , fK(x)), where K is finite. Here fi is the ith feature for our learning problem.
Consider the following objective function:

J(w, λ) =
1

n

n∑
i=1

1

2
(yi − wTF (xi))

2 + λ||w||1 (6)

where ||w||1 =
∑n

i=1 |wi| (||w||1 is called the L1 norm of the vector w). We use our data to learn
the vector w by minimizing J(w, λ), i.e.

w∗ = arg min
w∈Rk

J(w, λ) (7)

The above optimization criterion typically leads to an effective feature selection by picking a large
value for parameter λ. In other words if we pick a large value of λ many wis will be 0. Therefore
the corresponding feature function will be unimportant for our predictor.

6 [2 pts] Write the derivative of the first term ( 1
n

∑n
i=1

1
2(yi − wTF (xi))

2) of the function wrt
wk as akwk − rk. (ie find ak and rk).

7 [7 pts] It can be shown that at optima the following conditions is satisfied:-

w∗k =


ri+λ
ai

if rk < −λ
0 if rk ∈ [− λ, λ]

ri−λ
ai

if rk > λ

(8)

Let’s explore the relation between the regularization parameter λ, the weight of the kth
parameter wk and the quantity rk What is the meaning of rk (2 pt)? Provide a plot of w∗i vs
ri. Where does λ appear in the plot (3 pt)? What can you say about when the value of w∗k
is zero (2 pts)?
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2 k Nearest Neighbor and Kernel Regression (25pt, Zeyu)

In this problem, we are going to explore the relationship between k-NN and Kernel Regression.
Given labeled training data of the form (x1, y1), ..., (xn, yn) for xi ∈ Rd and yi ∈ R, kernel regression
is a widely used non-parametric regression method that applies a kernel function K(·) to smooth
the data yi:

r̂(x) =

∑n
i=1K(x− xi)yi∑n
i=1K(x− xi)

(9)

where n is the number of data points, and r̂(x) is the estimator of y (a scalar) at the point x
(which is d-dimensional). There are many choices for the function K (not to be confused with the
k in k-NN), possibly the most common one being the Gaussian kernel K(x) = e−‖x‖

2/σ2
. (The

word “kernel” in this context has nothing to do with the kernel trick you saw in SVMs or logistic
regression.) Note that in general kernel regression is a method for regression (as the name suggests),
while k-NN is used for classification.

We can re-express r̂ as a weighed sum of the yi as follows:

r̂(x) =

n∑
i=1

wi(x, xi)yi, where wi(x, xi) =
K(x− xi)∑n
j=1K(x− xj)

. (10)

In the following questions we are going to look at 1-dimensional (d = 1) classification data with
two classes, i.e. training data are in the form of (xi, yi) where xi ∈ R and yi ∈ {0, 1}, for i =
1, ..., n.

(a) [5pts] Suppose that xi = i for all i = 1, ..., n, and to predict which class any new point x0 ∈ [0, n]
belongs to, we use the decision rule

ŷ0 = I(r̂(x0) > 0.5),

where I is the indicator function that equals to 1 if the expression within I is true, and 0 if not
true. Can you think of a kernel function K such that this decision rule gives the same answer as
the k-nearest neighbor algorithm? (Hint: the function K(x) should be defined at some fixed range
like [a, b); you can ignore the case where x0 is near the margins, i.e. close to 0 or n.)

(b) In general, if training data is drawn from some marginal distribution p(x), we are unable to find
a nice-looking kernel to simulate k-NN. One way to solve this problem is to use ”locally weighted
regression (LWR)” instead of kernel regression. The LWR is very similar to kernel regression except
that we only calculate the weighted sum of k points near the given new point x:

r̂(x) =
∑

i s.t. xi∈k-NN of x

wi(x, xi)yi (11)

Now consider the case of weighted k-nearest neighbor (WKNN). Weighted k-NN penalizes the vote
of every point z within the k-NN range by d(x, z), the distance from x to z, meaning that having
a point in class j in the k-neighbor will increase the vote for this class by 1/d(x, z).

(b.1) [5pts] What should we put in for wi(x, xi) so that the decision rule ŷ = I(r̂(x) > 0.5) gives
the same answer as (unweighed) k-NN?

(b.2) [5pts] What type of k-NN does kernel regression with an arbitrary kernel function K(x)
simulate exactly? (Specify the value of k, whether the k-NN is weighted or non-weighted, and, if
weighed, what the weights are.)
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(c) [5pts] How do you modify locally weighted regression method if we want to use it to the simulate
weighted k-NN algorithm with more than 2 classes?

(d) [5pts] Now consider how training and test error change when varying the kernel function. Sort
the kernel functions plotted below in order from smallest to largest training error; same for bias of
testing error; same for variance of testing error.
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Figure 1: Kernel functions

Which one’s performance is closer to 1-NN and which one’s is closer to n-NN? (n is the number of
data)

3 Variance and Bias Tradeoff, Model Selection [25pt, Derry]

In the following questions, assume zero Bayes error, i.e. zero noise variance.

1. [12 points] In class we define True Risk as Mean Squared Error between our model and the
true model as:

R(f) = E[(f(X)− Y )2] (12)

We also show this risk in terms of Bias-Variance Tradeoff, i.e:

R(f) = E[(f(X)− Y )2] = V ariance+Bias2 (13)

where Y = f∗(X) (since we assume noise free problem).

We can also define risk in terms of our estimated parameter θ̂ (obtained using MLE or MAP
or density estimator, etc) and the true parameter θ as:

R(θ, θ̂) = Eθ(θ̂ − θ)2 = V arθ(θ̂) + bias2 (14)

where bias = Eθ[θ̂]− θ

Let X1, ..., Xn ∼ Bernoulli(p), be our coin-flip example where each Xi is an independent
flip where Xi = 1 indicates flipping a head, Xi = 0 indicates flipping a tail, and p is the
probability of getting a head.

Consider two estimators for p, p̂1 = 1
n

∑
iXi (the MLE estimate) and p̂2 =

∑
iXi+α

α+β+n (the
mean of the posterior Beta distribution P (p|D) when we use Beta(α, β) as prior).
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(a) [1 point] Compute the risk of p̂1, i.e. R(p, p̂1)

(b) [4 point] Compute the risk of p̂2, i.e. R(p, p̂2)

(c) [2 point] Which estimator p̂1 or p̂2 that you will prefer when there is less data and
which will you prefer when there is more data? (Hint: consider bias-variance tradeoff)

(d) [3 point] Given a particular n, find the value of α and β that will make the risk of p̂2
constant.

(e) [2 point] Using Hoeffding’s inequality, and knowing that P(0 ≤ Xi ≤ 1) = 1, find an
upper bound of |p̂1 − p| with a probability of at least 1− γ.

Note: Whenever appropriate, give the answer in terms of α, β, γ, p, and n.

2. [8 points] Consider the case when Xi’s have continuous value, and i.i.d according to a
probability density g; i.e. X1, ..., Xn ∼ g.

Let ĝ denotes some estimator of g. The risk R(g, ĝ) in this case can be expressed as R(g, ĝ) =
E[L(g, ĝ)] where

L(g, ĝ) =

∫
(ĝ(x)− g(x))2dx (15)

(a) [3 point] Given R̃(g, ĝ) = E[L̃(g, ĝ)] where

L̃(g, ĝ) =

∫
(ĝ(x))2dx− 2

∫
ĝ(x)g(x)dx (16)

Show that minimizing R̃(g, ĝ) over ĝ is equivalent to minimizing R(g, ĝ).

(b) [5 point] Given a second sample used as validation set, V1, ..., Vn ∼ g, we define the risk
on this validation set as

R̂(g, ĝ) =

∫
(ĝ(x))2dx− 2

n

n∑
i=1

ĝ(Vi) (17)

where ĝ is still based on X1, ..., Xn.

Show that E[R̂(g, ĝ)] = R̃(g, ĝ). Hence, R̂(g, ĝ) can be used as an estimate of the risk.

3. [5 points] In this problem you will implement L1 regularization to logistic regression. Use a
step size around .0001.

The training set for this task is given at http://www.cs.cmu.edu/~epxing/Class/10701/

hw2-train.csv. The test set is given at http://www.cs.cmu.edu/~epxing/Class/10701/

hw2-test.csv. The data is comma-separated (no header), with the first column being the
class name. There are 2 classes: 0 and 1. Each feature can take a value: 1, 2, or 3.

We will use cross validation to select the model class (i.e., the appropriate weight (λ) for the
regularizer) which has the smallest empirical error on the validation set.

Use Leave-One-Out cross validation on the training data to pick appropriate weight (λ)
between 0 and 50 for the regularizer.
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(a) [2 points] If there are more than one values of λ that minimizes the empirical error on
the validation set, i.e.

λ̂ = argminλ
1

K

K∑
k=1

R̂Vk(f̂k,λ) (18)

Which value of λ will you pick (the largest? the smallest?) and why?

(b) [1 points] Based on your answer to the previous question and your experiment result,
what is the value of λ you will select for the test set?

(c) [1 points] What is the empirical error on the validation set?

(d) [1 points] What is the empirical error on the test set?

Submit your code (zipped and named with your andrew ID or your email, in case you do not
have an andrew ID) via email to dwijaya@andrew.cmu.edu.

4 SVMs [25pt, Martin]

1. [6 points] The Radial Basis Function (a.k.a. Gaussian) kernel with inverse width κ > 0 is
defined as

K(u,v) = e−κ‖u−v‖
2
.

In Figure 2 we have plotted the decision boundaries and margins for SVM learned on the
same data set using the following parameters (not in the same order as the figures):

i. Linear kernel, C = 10;

ii. Linear kernel, C = 1;

iii. Linear kernel, C = 0.1;

iv. RBF kernel with κ = 1, C = 3;

v. RBF kernel with κ = 10, C = 1;

vi. RBF kernel with κ = 0.1, C = 15.

Match each one of the figures with one of these parameter settings. Explain your matchings
in one or two words each.

2. [3 points] In Figure 2e, some of the support vectors for each class are far away from any
points from the other class. For example, there are four support vectors from Class 1 near
the leftmost edge of the plot (corresponding to small values for the coordinate plotted on the
horizontal axis), even though there are no points from Class 2 nearby. Explain why.

3. [16 points] Recall that we can restate the non-kernelized version of SVM as minimizing the
sum of hinge losses per sample, defined as LossSVM(f(xi), yi) = (1−(w·xi+b)yi)+, regularized
by w · w:

min
w,b

w · w + C
∑
i

LossSVM(f(xi), yi)

where (xi, yi) are pairs of points and labels, with yi ∈ {−1,+1}.
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Figure 2: SVM decision boundaries and margins learned on the same data set for several parameter
settings. Circles and triangles denote Class 1 and 2 respectively, solid points are support vectors.
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(f)

Suppose you are given a data set (x1, y1), ..., (xn, yn) with n = 2000000, where for i = 1, ..., n/2
we have xi = 0 and yi = −1, and for i = n/2 + 1, ..., 2n we have xi = 2 and yi = +1. In other
words, you are given 1 million copies of the point 0 (in one dimension, of course), all labeled
−1, and 1 million copies of the point 2, all labeled +1.

(a) [7 points] Find w and b to minimize the SVM objective for this data, assuming C = 1.

What is the decision boundary and the margin of the resulting SVM? (How would the
answer change if we changed C to be progressively smaller, tending to 0?)

(b) [7 points] Now suppose in addition to those n = 2000000 data points, we were also given
an n+ 1’th point:

xn+1 = 100, yn+1 = −1.

What are the new optimal values of w and b (still using C = 1)?

(c) [2 points] Intuitively, how is the behavior of the SVM in part (b) different from what
would happen if we used logistic regression instead?
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