
10-701 Machine Learning, Fall 2012: Homework 2 Solutions

1 Learning with L1 norm

Suppose you want to predict an unknown value Y ∈ R, but you are only given a sequence of noisy
observations x1, . . . , xn of Y with iid noise (xi = Y + εi).

We have seen in the last homework, that if we assume the noise is i.i.d. Gaussian(εi ∼ N(0, σ2)),
finding the maximum likelihood estimate for Y is equivalent to finding the value ŷ which minimizes
the sum of the least square errors to the x’s. That is to say

ŷ = arg min
y

n∑
i=1

(y − xi)2 (1)

And there is a simple closed form solution:

ŷ =
1

n

n∑
i=1

xi (2)

It was also suggested that if we assume that the noise is i.i.d. Laplace (εi ∼ Laplace(0, b)) with
pdf

fεi(x) =
1

2b
exp

(
−|x|
b

)
(3)

we end up with a maximum likelihood estimator that is in some sense more robust. We will show
this more rigorously in this part.

1 [2 pts] Begin by showing that finding the MLE for Y, assuming Laplace noise, is equivalent
to finding the value ŷ that minimizes the sum of absolute error. That is

L(y) =

n∑
i=1

|y − xi| (4)

ŷ = arg min
y
L(y) (5)

Solution: Likelihood of Y is

P (X|Y ) =
n∏
i=1

(−−|xi − Y |
b

) (6)

log(P (X|Y )) ∝
n∑
i

(−|xi − Y |) (7)
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Maximizing log(P (X|Y )) is equivalent to minimizing − log(P (X|Y )) which gives me

L(y) =
n∑
i

|xi − y|

ŷ = arg min
y
L(y)

2 [4 pts] A standard way to minimize a loss function is to take the derivative and set it to zero.
This loss function is not directly differentiable. However, it is easy to see that the function is
not differentiable only where y has same value as any of the x’s.

Assume that the x’s are distinct and are sorted in ascending order (∀i,∀j > i, xj > xi).

Find an expression for the gradient dL(y)
dy under the constraint that y lies between two con-

secutive values of x (That is to say xi < y < xi+1). (Hint: You may have to consider x’s
which are > y separately from the x’s which are < y)

Solution: Let X+ be the values of x which are > y and let X− be the values of x which are
< y. Then

dL(y)

dy
=

d
∑n

i |xi − y|
dy

(8)

=

|X+|∑
i

d|x+i − y|
dy

+

|X−|∑
i

d|x−i − y|
dy

(9)

=

|X+|∑
i

d(x+i − y)

dy
+

|X−|∑
i

d(y − x−i )

dy
(10)

= |X−| − |X+| (11)

In words the derivative is (the number of X’s smaller than y) - (the number of X’s larger
than y).

3 [3 pts] Assuming that there are an even number of x’s, what are all the values of y for which
dL(y)
dy = 0?

Solution: The derivative is 0 when (the number of X’s smaller than y) = (the number of X’s
larger than y). Let Xi and Xi+1 be the middle 2 elements of X. Then when Xi < y < Xi+1

the derivative is 0.

4 [3 pts] If we have an odd number of x’s, there is no value of y where dL(y)
dy = 0. However there

is a y0 such that dL(y)
dy < 0 if y < y0 and dL(y)

dy > 0 if y > y0. What is y0?

Solution: Let Xi be the middle element of X. Then y0 = Xi. Simply, if y < y0, I will have
|X+| > |X−| and dL(y)

dy < 0 and if y > y0, I will have |X+| < |X− and dL(y)
dy > 0.

5 [4 pts] Your answer in the last two parts are therefore the solution to ŷ. Give an explanation of
what the solution represents (Hint: Its either mean, median or mode). Give a brief explanation
why this solution may be more robust against outlier in the data (as compared to least square
errors).
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Solution: A really far outlier will result in the mean being skewed. For instance if X =
(1, 1, 1, 1, 1, 1, 1, 1, 1, 10) then using least square the prediction will be 19/10 = 1.9 where as
using absolute error, I will still have y = 1.

Now we will see the how L1 penalty leads to feature selection. You are given a set of points and
the corresponding outputs: D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and yi ∈ R for i = 1, . . . , n.
You want to use this data to train a linear predictor y = wTF (x) where wT = (w1, . . . , wK) and
F (x)T = (f1(x), . . . , fK(x)), where K is finite. Here fi is the ith feature for our learning problem.
Consider the following objective function:

J(w, λ) =
1

n

n∑
i=1

1

2
(yi − wTF (xi))

2 + λ||w||1 (12)

where ||w||1 =
∑n

i=1 |wi| (||w||1 is called the L1 norm of the vector w). We use our data to learn
the vector w by minimizing J(w, λ), i.e.

w∗ = arg min
w∈Rk

J(w, λ) (13)

The above optimization criterion typically leads to an effective feature selection by picking a large
value for parameter λ. In other words if we pick a large value of λ many wis will be 0. Therefore
the corresponding feature function will be unimportant for our predictor.

6 [2 pts] Write the derivative of the first term ( 1
n

∑n
i=1

1
2(yi − wTF (xi))

2) of the function wrt
wk as akwk − rk. (ie find ak and rk).

Solution:

Summation term =
1

2n

n∑
p=1

(yp − wTF (xp))
2

=
1

2n

n∑
p=1

(yp −
k∑
j=1

wjfj(xp))
2

=
1

2n

n∑
p=1

(yp −
k∑

j=1,j 6=i
wjfj(xp)− wifi(xp))2

=
1

2n

n∑
p=1

w2
i fi(xp)

2 + 2(wifi(xp))(yp −
k∑

j=1,j 6=i
wjfj(xp)) + (yp −

k∑
j=1,j 6=i

wjfj(xp))
2


=

1

2
aiw

2
i − riwi + di (14)

where ai = 1
n

∑n
p=1 fi(xp), ri = p=1

n fi(xp)(yp−
∑k

j=1,j 6=iwjfj(xp)) and di = (yp−
∑k

j=1,j 6=iwjfj(xp))
2.

Thus the derivative wrt wi will be equal to aiwi − ri.

7 [7 pts] It can be shown that at optima the following conditions is satisfied:-

w∗k =


ri+λ
ai

if rk < −λ
0 if rk ∈ [− λ, λ]

ri−λ
ai

if rk > λ

(15)
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Figure 1: w∗i vs ri

Let’s explore the relation between the regularization parameter λ, the weight of the kth
parameter wk and the quantity rk What is the meaning of rk (2 pt)? Provide a plot of w∗i vs
ri. Where does λ appear in the plot (3 pt)? What can you say about when the value of w∗k
is zero (2 pts)?

Solution: The plot is shown in figure 1.

rk =
1

n

n∑
j=1

fj(xj)

yj − K∑
m=1,m 6=k

wmfm(xj)

 (16)

This is the correlation between the i-th basis function and the prediction error when we use
all basis function except the i-th one. The larger the ri is the more ”informative” it will
be for our purposes. As we see from the plot λ is the regularization parameter that decides
what we consider as a relevant / informative basis function/ feature. The plot also shows
that when the correlation between the ith basis and the residual is not significant then the
corresponding weight will be zero.

2 k Nearest Neighbor and Kernel Regression

2.1 (a)

K(x, xi) = I(−k/2 ≤ |x− xi| < k/2)

2.2 (b)

1. wi(x, xi) = 1/k
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2. Kernel regression resembles n-NN weighted regression with weight function

wi(x, xi) =
d−1(x, xi)∑n
j=1 d

−1(x, xj)

where n is the number of data point.

2.3 (c)

Solution 1 (do not modify kernel regression):

Replace y with an equivalent vector of dummy variables. Note that a dummy variable is a variable
taking 0 or 1, which can be written in the form I(condition) where I is the indicator function.

Suppose y ∈ {0, 1, ..., n−1}. Define y∗j = factor(yj) = < I(y
(1)
j 6= 1), I(y

(2)
j 6= 1), ..., I(y

(n−1)
j 6= 1) >

where yj is the label of the j-th data point and y∗j is the corresponding factorized label. Using kernel
regression on x, we will end up with a vector r̂(x) of a sequence of values between [0, 1]. Find the
first element that is less than 0.5 and assign its index to y; if all the elements in this vector are
more than 0.5; assign 0 to y.

Solution 2 (change kernel regression into a voting function):

r̂(x) = arg maxy
∑

i|xi∈k−nnwi(x, xi)I(y = yi). This method is in fact equivalent to using dummy
variables in someway.

One typical wrong answer is y = round(r̂(x)). Consider the case where we only have data
(x=0, y=0) and (x=1, y=2). If we have a new point x = 0.5, it should be categorized into 0 or 2
for 2-NN algorithm. But using y = round(r̂(x)) will give us 1. Factorizing y is necessary since it is
a quantitative variable with different meaning for different value.

2.4 (d)

Asking about training error and test error is equivalent to asking about training risk and true risk.
Generally, a smoother kernel would generate more training risk; more bias and less variance in test.
Thus, the correct order is

1. Training risk: K2 < K1 < K3

2. Bias: K2 < K1 < K3

3. Variance: K3 < K1 < K2

4. K2 is closer to 1-NN; K3 is closer to n-NN

3 Variance and Bias Tradeoff, Model Selection

In the following questions, assume zero Bayes error, i.e. zero noise variance.

1. [12 points] In class we define True Risk as Mean Squared Error between our model and the
true model as:

R(f) = E[(f(X)− Y )2] (17)
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We also show this risk in terms of Bias-Variance Tradeoff, i.e:

R(f) = E[(f(X)− Y )2] = V ariance+Bias2 (18)

where Y = f∗(X) (the problem is assumed to be noise free).

We can also define risk in terms of our estimated parameter θ̂ (obtained using MLE or MAP
or density estimator, etc) and the true parameter θ as:

R(θ, θ̂) = Eθ(θ̂ − θ)2 = V arθ(θ̂) + bias2 (19)

where bias = Eθ[θ̂]− θ

Let X1, ..., Xn ∼ Bernoulli(p), be our coin-flip example where each Xi is an independent
flip where Xi = 1 indicates flipping a head, Xi = 0 indicates flipping a tail, and p is the
probability of getting a head.

Consider two estimators for p, p̂1 = 1
n

∑
iXi (the MLE estimate) and p̂2 =

∑
iXi+α

α+β+n (the
mean of the posterior Beta distribution P (p|D) when we use Beta(α, β) as prior).

(a) [1 point] Compute the risk of p̂1, i.e. R(p, p̂1)

Answer:

R(p, p̂1) = V ar[p̂1] + (Bias[p̂1])
2

= V ar[
1

n

∑
i

Xi] + (E[
1

n

∑
i

Xi]− p)2

=
1

n2
np(1− p) + (p− p)2

=
p(1− p)

n

(b) [4 point] Compute the risk of p̂2, i.e. R(p, p̂2)

Answer:

R(p, p̂2) = V ar[p̂2] + (Bias[p̂2])
2

= V ar[
α+

∑
Xi

α+ β + n
] + (E[

α+
∑
Xi

α+ β + n
]− p)2

=
V ar[

∑
Xi]

(α+ β + n)2
+ (

α+ np

α+ β + n
− p)2

=
np(1− p)

(α+ β + n)2
+ (

α+ np

α+ β + n
− p)2

=
np(1− p) + (α− p(α+ β))2

(α+ β + n)2

(c) [2 point] Which estimator p̂1 or p̂2 that you will prefer when there is less data and
which will you prefer when there is more data? (Hint: consider bias-variance tradeoff)
Answer:

When there is less data, depends on the prior (if we trust the prior) we should choose
p̂2 that has lower variance. When there is more data, both estimators will typically
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converge to the same value (looking at the equations), unless the prior is really bad that
its effect is hard to ’wash out’ with more data. Hence, when there is more data, it maybe
more preferable to choose the smaller bias p̂1.

(d) [3 point] Given a particular n, find the value of α and β that will make the risk of p̂2
constant.

Answer:

R(p, p̂2) =
np(1− p) + (α− p(α+ β))2

(α+ β + n)2

=
1

(α+ β + n)2
[[

(α+ β)2 − n
]
p2 + [n− 2α(α+ β)] p+ α2

]
To make this constant (does not depend on p), we need to make the numerator a constant,
thus setting:

(α+ β)2 − n = 0

n− 2α(α+ β) = 0

Hence,

(α+ β)2 − n = 0

α+ β =
√
n

Therefore,

n− 2α(α+ β) = 0

n− 2α(
√
n) = 0

α =

√
n

2

β =

√
n

2

(e) [2 point] Using Hoeffding’s inequality, and knowing that P(0 ≤ Xi ≤ 1) = 1, find an
upper bound of |p̂1 − p| with a probability of at least 1− γ.

Answer: Using Hoeffding’s inequality, given X1, X2, ..., Xn, i.i.d. observations such that
E[Xi] = p and a ≤ Xi ≤ b; for any ε ≥ 0, P (| 1n

∑
iXi − p | ≥ ε) ≤ 2e−2nε

2/(b−a)2 . Hence, in
our case:
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P (| 1
n

∑
i

Xi − p| ≥ ε) ≤ 2e−2nε
2

P (| 1
n

∑
i

Xi − p| ≤ ε) > 1− 2e−2nε
2

P (|p̂1 − p| ≤ ε) > 1− γ

Hence set:

γ = 2e−2nε
2

log
γ

2
= −2nε2

ε =

√
1

2n
log

2

γ

Thus, the upper bound is ε =
√

1
2n log

2
γ .

Note: Whenever appropriate, give the answer in terms of α, β, γ, p, and n.

2. [8 points] Consider the case when Xi’s have continuous value, and i.i.d according to a
probability function g; i.e. X1, ..., Xn ∼ g.

Let ĝ denotes some estimator of g. The risk R(g, ĝ) in this case can be expressed as R(g, ĝ) =
E[L(g, ĝ)] where

L(g, ĝ) =

∫
(ĝ(x)− g(x))2dx (20)

(a) [3 point] Given R̃(g, ĝ) = E[L̃(g, ĝ)] where

L̃(g, ĝ) =

∫
(ĝ(x))2dx− 2

∫
ĝ(x)g(x)dx (21)

Show that minimizing R̃(g, ĝ) over ĝ is equivalent to minimizing R(g, ĝ).

Answer:

minĝ R(g, ĝ) = minĝ E[

∫
(ĝ(x))2dx− 2

∫
ĝ(x)g(x)dx+

∫
(g(x))2dx]

minĝ R(g, ĝ) = minĝ E[

∫
(ĝ(x))2dx]− 2E[

∫
ĝ(x)g(x)dx] + E[

∫
(g(x))2dx]

where the last term is constant in terms of ĝ (does not depend on ĝ. Hence,
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minĝ R(g, ĝ) = minĝ E[

∫
(ĝ(x))2dx]− 2E[

∫
ĝ(x)g(x)dx]

minĝ R(g, ĝ) = minĝ E[

∫
(ĝ(x))2dx− 2

∫
ĝ(x)g(x)dx]

minĝ R(g, ĝ) = minĝ R̃(g, ĝ)

(b) [5 point] Given a second sample used as validation set, V1, ..., Vn ∼ g, we define the risk
on this validation set as

R̂(g, ĝ) =

∫
(ĝ(x))2dx− 2

n

n∑
i=1

ĝ(Vi) (22)

where ĝ is still based on X1, ..., Xn.

Show that E[R̂(g, ĝ)] = R̃(g, ĝ). Hence, R̂(g, ĝ) can be used as an estimate of the risk.

Answer:

E[R̂(g, ĝ)] = E[

∫
(ĝ(x))2dx]− E[

2

n

n∑
i=1

ĝ(Vi)]

R̃(g, ĝ) = E[

∫
(ĝ(x))2dx]− 2E[

∫
ĝ(x)g(x)dx]

We need to prove that the second terms are equal in these two expressions:

One possible answer, using Law of Large Numbers, as n→∞, 1
n

∑
iXi → E[X]. Hence,

E[
2

n

n∑
i=1

ĝ(Vi)] = 2 E[
1

n

n∑
i=1

ĝ(Vi)]

= 2 E[E[ĝ(V )]]

= 2 E[

∫
ĝ(v)g(v)dv]

= 2 E[

∫
ĝ(x)g(x)dx]

Hence,

E[R̂(g, ĝ)] = R̃(g, ĝ)

Another possible answer, using Law of iterated expectation, E[V ] = EX(EV (V |X)):
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E [
2

n

n∑
i=1

ĝ(Vi)] = 2 E[
1

n

n∑
i=1

ĝ(Vi)]

= 2
1

n

n∑
i=1

E[ĝ(Vi)]

= 2
1

n

n∑
i=1

E[ĝ(V )] (since V ′i s are i.i.d.)

= 2 E[ĝ(V )]

= 2 EX [EV (ĝ(V )|X)]

= 2 EX [

∫
ĝ(v)g(v|x)dv]

= 2 E[

∫
ĝ(v)g(v)dv] (since V ′i s and X

′
is are independent samples ∼ g)

= 2 E[

∫
ĝ(x)g(x)dx]

Hence,

E[R̂(g, ĝ)] = R̃(g, ĝ)

3. [5 points] In this problem you will implement L1 regularization to logistic regression. Use a
step size around .0001.

The training set for this task is given at http://www.cs.cmu.edu/~epxing/Class/10701/

hw2-train.csv. The test set is given at http://www.cs.cmu.edu/~epxing/Class/10701/

hw2-test.csv. The data is comma-separated (no header), with the first column being the
class name. There are 2 classes: 0 and 1. Each feature can take a value: 1, 2, or 3.

We will use cross validation to select the model class (i.e., the appropriate weight (λ) for the
regularizer) which has the smallest empirical error on the validation set.

Use Leave-One-Out cross validation on the training data to pick appropriate weight (λ)
between 0 and 50 for the regularizer.

Answer: The update rule:

θj ← θj + η (
∑
i

(yi − P (yi = 1|xi; θ))xji − 2λθj)

(a) [2 points] If there are more than one values of λ that minimizes the empirical error on
the validation set, i.e.

λ̂ = argminλ
1

K

K∑
k=1

R̂Vk(f̂k,λ) (23)
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Which value of λ will you pick (the largest? the smallest?) and why?

Answer: The largest, to cause more sparsity in learned weights and possibly make the
model simpler

Using step size, η = 0.0001 and ε for convergence = 0.01:

(b) [1 points] Based on your answer to the previous question and your experiment result,
what is the value of λ you will select for the test set? Answer: λ = 8

(c) [1 points] What is the empirical error on the validation set?

Answer: 0.06

(d) [1 points] What is the empirical error on the test set?

Answer: 0.15

Submit your code (zipped and named with your andrew ID or your email, in case you do not
have an andrew ID) via email to dwijaya@andrew.cmu.edu.

4 SVMs

1. [6 points] The Radial Basis Function (a.k.a. Gaussian) kernel with inverse width κ > 0 is
defined as

K(u,v) = e−κ‖u−v‖
2
.

In Figure 2 we have plotted the decision boundaries and margins for SVM learned on the
same data set using the following parameters (not in the same order as the figures):

i. Linear kernel, C = 10;

ii. Linear kernel, C = 1;

iii. Linear kernel, C = 0.1;

iv. RBF kernel with κ = 1, C = 3;

v. RBF kernel with κ = 10, C = 1;

vi. RBF kernel with κ = 0.1, C = 15.

Match each one of the figures with one of these parameter settings. Explain your matchings
in one or two words each.

Answer: Figures (b), (d), and (f) are clearly based on the linear kernel. Of these, (f) has
the largest penalty on the slack variables, and (c) the smallest. This can be seen by observing
either the magnitude of w ·w in the three figures, or the number of support vectors and their
positions with respect to the decision margin. So we conclude that i, ii, and iii match (f),
(b), and (c) respectively.

Since Figure (a) is clearly the result of using a kernel with significantly smaller bandwidth
than (d) and (e), it must correspond to v. Figures (d) and (e) can be differentiated using
either the bandwidth or the penalty, both of which suggest (d) corresponds to vi and (e) to
iv.
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Figure 2: SVM decision boundaries and margins learned on the same data set for several parameter
settings. Circles and triangles denote Class 1 and 2 respectively, solid points are support vectors.
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2. [3 points] In Figure 2e, some of the support vectors for each class are far away from any
points from the other class. For example, there are four support vectors from Class 1 near
the leftmost edge of the plot (corresponding to small values for the coordinate plotted on the
horizontal axis), even though there are no points from Class 2 nearby. Explain why.

Answer: There are two ways to think about this. One is to simply state that transforming
the data to the implicit feature space of the Gaussian kernel results in a very different config-
uration of the points, making it irrelevant that in the original space the points near the left
edge of figure (e) are “far” from points of the other label.

A possibly more intuitively satisfying view is the following. Solving the kernelized SVM gives
us a linear function in the implicit feature space given by f(x) = wTΦ(x) + b, where w and
Φ(x) are infinite dimensional, which we then threshold at 0 to classify a new point. We
know that we can compute the same quantity in terms of some numbers β1, ..., βn and b′

as f(x) =
∑n

i=1 βiK(xi, x) + b′ (note that βi are not necessarily positive). This is now a
function of x in the original feature space that we can plot (This is exactly how Figure 2 was
obtained). Note that for the Gaussian kernel, this function is simply the weighted sum of
spherical Gaussians (with identical variance) centered at the training points. The decision
boundary is still the set f(x) = 0, and the decision margin is still the set f(x) ∈ [−1, 1]. In
light of this, it is obvious that for sufficiently high C, a point in a low density region must be
a support vector in order to keep it outside the decision margin.

3. [16 points] Recall that we can restate the non-kernelized version of SVM as minimizing the
sum of hinge losses per sample, defined as LossSVM(f(xi), yi) = (1−(w·xi+b)yi)+, regularized
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by w · w:

min
w,b

w · w + C
∑
i

LossSVM(f(xi), yi)

where (xi, yi) are pairs of points and labels, with yi ∈ {−1,+1}.

Suppose you are given a data set (x1, y1), ..., (xn, yn) with n = 2000000, where for i = 1, ..., n/2
we have xi = 0 and yi = −1, and for i = n/2 + 1, ..., 2n we have xi = 2 and yi = +1. In other
words, you are given 1 million copies of the point 0 (in one dimension, of course), all labeled
−1, and 1 million copies of the point 2, all labeled +1.

(a) [7 points] Find w and b to minimize the SVM objective for this data, assuming C = 1.

What is the decision boundary and the margin of the resulting SVM? (How would the
answer change if we changed C to be progressively smaller, tending to 0?)

Answer: (This is not the shortest possible solution!) Define D = 1000000C = 106. We
can rewrite the objective as

min
w,b

w2 +D(1 + b)+ +D(1− 2w − b)+.

We’d like to get rid of b first. The second term is exactly 0 for any b ≤ −1. The third
term is exactly 0 for any b ≥ 1 − 2w. If 1 − 2w ≤ −1 (i.e. w ≥ 1), then the last two
terms are both 0 for b = −1, which must be a minimum since both of those terms are
non-negative, and the objective is w2. Of course this is minimized at w = 1, with loss
equal to 1.

If 1 − 2w ≥ −1 (i.e. w ≤ 1), then the sum of the last two terms is minimized for any
−1 ≤ b ≤ 1 − 2w, and is equal to D(2 − 2w). Thus we must minimize w2 − 2Dw + 2D
subject to w ≤ 1. This is a convex function, and it is decreasing at w = 1 (the derivative
is 2w− 2D, which at w = 1 is 2− 2D = 2− 2 · 106 < 0), so the optimal value must be at
w = 1. Indeed, for w = 1 it is equal to 1, which, luckily, matches the result we had when
considering w ≥ 1 (a different answer would indicate an error on my part).

So we have that the optimal values are b = −1 and w = 1, which corresponds to a decision
boundary at x = 1 and a decision margin between 0 and 2.

We can also easily obtain the solution for any other value of C. In particular, we see that
a larger value of C would leave the answer unchanged (since the derivative for w ≤ 1
would still be negative at w = 1). In fact, the answer remains unchanged as long as
2−2 ·106C ≤ 0, i.e. C ≥ 10−6. For smaller C, the optimal value of w becomes w = 106C.

(b) [7 points] Now suppose in addition to those n = 2000000 data points, we were also given
an n+ 1’th point:

xn+1 = 100, yn+1 = −1.

What are the new optimal values of w and b (still using C = 1)?

Answer: (Again, there are much shorter solutions.) Now we need to find

min
w,b

w2 +D(1 + b)+ +D(1− 2w − b)+ + (1 + 100w + b)+.

There are three lines where the objective is not differentiable – b = −1, 2w + b = 1, and
100w + b = −1. Let’s start by considering the case 100w + b ≤ −1. Then the third
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term is 0, and the objective is w2 + D(1 + b)+ + D(1 − 2w − b)+. If b ≤ −1, then we
must minimize w2 + D(1 − 2w − b)+ subject to b ≤ min(−1,−1 − 100w). Since that
function is decreasing in b, we set b = min(−1,−1− 100w) = −1− 100w+, and minimize
w2 + D(2 + 100w+ − 2w) (note second term is always positive, so we can omit the “+”
from the subscript). This function is decreasing for negative w and increasing for positive
w, so the minimum occurs at w = 0 and is 2D.

For b ≥ −1, the objective is

w2 +D(1 + b) +D(1− 2w − b) = w2 +D(1 + b) +Dmax(1− 2w − b, 0)

≥ w2 +D(1 + b) +Dmax(1− 2w − b,−b)
= w2 +D(1 + b) +Dmax(1− 2w, 0)−Db
= w2 +D +D(1− 2w)+

≥ D.

In other words, subject to 100w + b ≤ −1 the objective is at least D.

Now consider 100w+ b ≥ −1. We must minimize w2 +D(1 + b)+ +D(1− 2w− b)+ + 1 +
100w + b.

If b ≤ min(−1, 1− 2w), the objective is w2 +D(1− 2w− b) + 1 + 100w+ b = w2− (2D−
100)w+D+1−(D−1)b. The minimum is w2−(2D−100)w+D+1−(D−1) min(−1, 1−2w).
For w ≤ 1, this is w2− (2D− 100)w+ 2D, and has derivative 2− 2D+ 100 < 0 at w = 1,
so w = 1 is the minimum and the objective is 101. Likewise for w ≥ 1, we must minimize
w2 + 98w + 2, which is minimized at w = 1 with value 101. We already see that the
solutions subject to 100w + b ≤ −1 need not be considered.

If b ≥ max(−1, 1−2w), the objective is w2+D(1+b)+1+100w+b, which is increasing with
b so we set b = max(−1, 1−2w) and minimize w2−(D+1) min(1, 2w−1)+100w+D+1.
It is easy to check that this is minimized at w = 1, with value 101.

Finally we have to check the cases when b is between −1 and 1 − 2w. If w ≥ 1, this
means b ∈ [1 − 2w,−1]. The objective is w2 + 1 + 100w + b. The best value for b is
b = 1 − 2w, the new objective is w2 + 98w + 2, and the minimum is 101 at w = 1. If
w ≤ 1, b ∈ [−1, 1− 2w], objective is w2− (2D− 100)w+ 2D+ 1 + b, minimized at b = −1
and equal to w2 − (2D − 100)w + 2D, which in turn is minimized at w = 1 and equal to
101.

So the optimal solution is unchanged – b = −1 and w = 1.

(c) [2 points] Intuitively, how is the behavior of the SVM in part (b) different from what
would happen if we used logistic regression instead?

Answer: The SVM solution is exactly the same in parts (a) and (b). The (unregularized)
logistic regression answer in part (b) would shift (slightly) due to the extra point. This
demonstrates the robustness of SVMs to certain types of outliers.
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