
10-701 Machine Learning, Fall 2012: Homework 3

Due Wednesday 11/14 at the beginning of class.

Instructions (important): Remember to submit your solution to each problem separately
in different piles on the table at the front of the classroom at the beginning of class on the day
the homework is due. At the top of the first page of each solution you hand in, clearly write the
class number (10701), the number of the problem (i.e. “Problem 1”, “Problem 2”, etc.), your
first and last name (assuming you have both), and your Andrew ID.

1 Clustering [35 points, Martin]

1.1 [25 points] K-means

Note: Remember to print and submit all your code along with the rest of your answers.

In K-means clustering, we are given points x1, ..., xn ∈ Rd and an integer K > 1, and our goal is to
minimize the within-cluster sum of squares (also known as the k-means objective)

J(C,L) =
n∑
i=1

‖xi − C`i‖
2

where C = (C1, ..., CK) are the cluster centers (Cj ∈ Rd), and L = (`1, ..., `n) are the cluster
assignments (`i ∈ {1, ...,K}).

Finding the exact minimum of this function is computationally difficult. The most common al-
gorithm for finding an approximate solution is Lloyd’s algorithm, which takes as input the set of
points and some initial cluster centers C, and proceeds as follows:

i. Keeping C fixed, find cluster assignments L to minimize J(C,L). This step only involves
finding nearest neighbors. Ties can be broken using arbitrary (but consistent) rules.

ii. Keeping L fixed, find C to minimize J(C,L). This is a simple step that only involves averaging
points within a cluster.

iii. If any of the values in L changed from the previous iteration (or if this was the first iteration),
repeat from step i.

iv. Return C and L.
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The initial cluster centers C given as input to the algorithm are often picked randomly from
x1, ..., xn. In practice, we often repeat multiple runs of Lloyd’s algorithm with different initializa-
tions, and pick the best resulting clustering in terms of the k-means objective. You’re about to see
why.

(a) [3 points] Briefly explain why Lloyd’s algorithm is always guaranteed to converge (i.e. stop)
in a finite number of steps.

(b) [5 points] Implement Lloyd’s algorithm. Run it until convergence 200 times, each time initial-
izing using K cluster centers picked at random from the set {x1, ..., xn}, with K = 5 clusters,
on the 500 two dimensional data points in http://www.cs.cmu.edu/~epxing/Class/10701/

HW/hw3-cluster.csv. Plot in a single figure the original data (in gray), and all 200× 5 clus-
ter centers (in black) given by each run of Lloyd’s algorithm. You can play around with the
plotting options such as point sizes so that the cluster centers are clearly visible. Also com-
pute the minimum, mean, and standard deviation of the within-cluster sums of squares for the
clusterings given by each of the 200 runs.

(c) [4 points] Kmeans++ is an initialization algorithm for K-means proposed by David Arthur
and Sergei Vassilvitskii in 2007:

i. Pick the first cluster center C1 uniformly at random from the data x1, ..., xn. In other
words, we first pick an index i uniformly at random from {1, ..., n}, then set C1 = xi.

ii. For j = 2, ...,K:

• For each data point, compute its distance Di to the nearest cluster center picked in a
previous iteration:

Di = min
j′=1,...,j−1

‖xi − Cj′‖.

• Pick the cluster center Cj at random from x1, ..., xn with probabilities proportional to
D2

1, ..., D
2
n. Precisely, we pick an index i at random from {1, ..., n} with probabilities

equal to D2
1/(

∑n
i′=1D

2
i′), ..., D

2
n/(

∑n
i′=1D

2
i′), and set Cj = xi.

iii. Return C as the initial cluster assignments for Lloyd’s algorithm.

Replicate the figure and calculations in part (b) using Kmeans++ as the initialization algo-
rithm, instead of picking C uniformly at random.

Hopefully your results make it clear how sensitive Lloyd’s algorithm is to initializations, even in
such a simple, two dimensional data set!

Picking the number of clusters K is a difficult problem. Now we will see one of the most common
heuristics for choosing K in action.

(d) [3 points] Explain how the exact minimum of the k-means objective behaves on any data
set as we increase K from 1 to n.

A common way to pick K is as follows. For each value of K in some range (e.g. K = 1, ..., n, or some
subset), we find an approximate minimum of the k-means objective using our favorite algorithm
(e.g. multiple runs of randomly initialized Lloyd’s algorithm). Then we plot the resulting values
of the k-means objective against the values of K. Often, if our data set is such that there exists a
natural value for K, we see a “knee” in this plot, i.e. a value for K where the rate at which the
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Figure 1: Picking the number of clusters (a toy example).

within-cluster sum of squares is decreasing sharply reduces. This suggests we should use the value
for K where this knee occurs. In the toy example in Figure 1, this value would be K = 6.

(e) [3 points] Produce a plot similar to the one in Figure 1 for K = 1, ..., 15 using the data set
in (b), and show where the “knee” is. For each value of K, run k-means with at least 200
initializations and pick the best resulting clustering (in terms of the objective) to ensure you
get close to the global minimum.

(f) [3 points] Repeat part (e) with the data set in http://www.cs.cmu.edu/~epxing/Class/

10701/HW/hw3-cluster2.csv. Find 2 knees in the resulting plot (you may need to plot the
square root of the within-cluster sum of squares instead, in order to make the second knee
obvious). Explain why we get 2 knees for this data set (consider plotting the data to see
what’s going on).

We conclude our exploration of k-means clustering with the critical importance of properly scaling
the dimensions of your data.

(g) [2 points] Load the data in http://www.cs.cmu.edu/~epxing/Class/10701/HW/hw3-cluster3.

csv. Perform k-means clustering on this data with K = 2 with 500 initializations. Plot the
original data (in gray), and overplot the 2 cluster centers (in black).

(h) [2 points] Normalize the features in this data set, i.e. first center the data to be mean 0
in every dimension, then rescale each dimension to have unit variance. Repeat part (g) with
this modified data.

As you can see, the results are radically different. You should not take this to mean that data should
always be normalized. In some problems, the relative values of the dimensions are meaningful and
should be preserved (e.g. the coordinates of earthquake epicenters in a region). But in others, the
dimensions are on entirely different scales (e.g. age in years v.s. income in thousands of dollars).
Proper pre-processing of data for clustering is often part of the art of machine learning.
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1.2 Hierarchical clustering [10 points]

Agglomerative hierarchical clustering is a family of hierarchical clustering algorithms that, equipped
with a notion of distance between clusters, form a binary tree with leaves for each original data
point as follows:

i. Initialize by placing each data point in its own cluster (i.e. singleton trees).

ii. Find the two closest clusters, join them in a single cluster (by creating a new node and making
it the parent of the roots of those two clusters).

iii. If there are more than one clusters (trees) left, repeat from step i.

iv. Return the final tree.

Some of the most common metrics of distance between two clusters {x1, ..., xm} and {y1, ..., yp}
are:

• Single linkage: Distance between clusters is the minimum distance between any pair of points
from the two clusters, i.e.

min
i=1,...,m
j=1,...,p

‖xi − yj‖;

• Complete linkage: Distance between clusters is the maximum distance between any pair of
points from the two clusters, i.e.

max
i=1,...,m
j=1,...,p

‖xi − yj‖;

• Average linkage: Distance between clusters is the average distance between all pair of points
from the two clusters, i.e.

1

m · p

m∑
i=1

p∑
j=1

‖xi − yj‖.

Also, given a clustering tree, we can define a partitioning of the data into K clusters by “cutting”
the tree some number of levels below the root. For example, if K = 2 we could define two clusters
based on the left and right subtrees of the root of the clustering tree. If K = 4, we could use the
subtrees of the children of the root, etc. (Note that if K is not a power of 2 we would need to come
up with some way of deciding which subtree gets preference.)

(a) [3 points] Using this procedure for turning a hierarchical clustering into a partition, which of
the three cluster similarity metrics described above would most likely result in clusters most
similar to those given by k-means? (Assume K is a power of 2).

(b) [4 points] Consider the data in Figure 2a. What would be the result if we extracted K = 2
clusters from the tree given by hierarchical clustering on this data set using single linkage?
(Describe your answer in terms of the labels 1 − 4 given to the four “clumps” in the data.)
Do the same for complete and average linkage.

(c) [3 points] Which of those three distance metrics (if any) would successfully separate the two
“moons” in Figure 2b? What about Figure 2c? Briefly explain your answer.

4



●

●

●●
● ●

●
●

●●
●

●●

●

● ●
● ●●●

●

●●

●●
●

●●

●

●

●
●

●
●

●
●●

●●
●

●● ●●

●
●

●●
●

●

●
●●

●●

●

●● ●●
●

● ●

●

●●
●

●●

●
●●

●
●

● ●●

● ●

●

●● ●
●

●

●

●

●
●

●

● ●

●
●

● ●

●

●

●

●
●

●

●●● ●
●

●
●

●

●

●

● ●●
●
●●

● ●
●

●●
●

●

● ●●
●

● ●

●
●

●

●●
●●●

●

●
●

● ●
●

●
●

●●

●●

●
●

●
●●

●● ●
●

●
●

●●

●

●

● ●

●●
●

●

●
●●

●
●

●

●
●

●●

●
●

●

●●

●

●
●

●
●

●

●

●
● ●

●●
● ● ●

● ●●●
●

● ●

●

●
● ●● ● ●●

●

●

●
●

● ●

●
●

●●
●● ●●●

●
●

●●●
●●

●
● ●● ●

●

●

●

●

●
●

●
●●●●●

●

●● ● ●●
● ●●

●

●

●

●

●

●

●
●●●

●

●
●

●
●

●

●

●
●

●
●

●● ●
● ●

●●

●

●

●
●● ●

●

●

●
● ●

●

●
● ●

● ●

●
●

●

●

●
●●

●●
●

●
●●

●
●

●
●●

●
●

●
● ●

●
●

●

●
●● ●

●
●

●

●

● ● ●

●●
● ●●

● ●

●

●
● ● ●●

● ●
●●● ●

●
● ●

●

●

●

● ●

●

●
●

●●● ●

●

● ●
● ●●

●
●

● ●

●

●

●

●

●
●● ● ●

●
●

●●
●● ●●

●●

●

● ●
●

●

●●
●

●

●
●

●●
● ●●

●

●
●

●●

● ●
●

●●●

●

●

●

●● ●●
●

●

●
●

●

●
●

●●
●● ●
●

●
●

●

●

●
●●

●

●
● ●

●

● ●
●

●
●●

●
●

●
●

●
●

● ●●

●
●

●
● ●

●
● ●

●

●
●

●
●

● ●●

●
●

●

● ●●
●

●
●

●

●

●●
●

● ●●

●

● ●●
●

●
●

●
● ●

●

●
●

●●

●

● ●
●

●
●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●
● ●

●
●

● ●

●
● ●

●

●

●
●

●
●

●

●

●

●● ●
●●

●

● ●
● ●●●

●

●
●

●
●

●

●

●●● ●

●
●

●

● ●
●

●●
●●● ●

●

●

●

● ●

●●
●

●
●

●

●

●
●

● ●
●

●

●

●● ● ●
●●

●
●

●
●● ●

●

●●●
●

●
●

●

● ●

●

●

●

●●

●

●
●● ●

●●
●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●
●

●

●
●

●
● ●

●

●
●

●
●●●●

●

● ●●●
●● ●

● ● ●

● ●

●●●
●

●●●●
●

●

●

●

●

●
●

●
●

● ●● ●● ●
●

●

●
●●

●
●●

●
●●

●
●

●
● ● ●

●

●● ●
●

●
●

●
●

●

●●
●

●

●●
●

●● ● ●
●

●
●●

●

●
●

●

●

●●
●

●

●

●

● ●

−2 0 2 4 6 8

−
4

−
2

0
2

4
6

1 2

3 4

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●● ●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●● ●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●
●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

(c)

Figure 2

2 Bayesian Network [25 points, Avi]

This problem will concern the Bayesian network in Figure 3.

Figure 3

2.1 [3 points] Joint Probability

Write down the factorization of the joint probability distribution over A,B,C,D,E, F which cor-
responds to this graph.

2.2 [5 points] conditional independence

For every pair of nodes in the graph say whether each of them are independent of each other or
not. Also test conditional independence for each pair except F when F is observed

2.3 [12 points] Inference

For this section we suppose that all the variables are binary, taking on the values 0, 1. The condi-
tional probability distributions on the graph have the following form:

• Nodes with a single parent take the value of their parent with probability 3
4 otherwise they

take the other value.
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• Nodes with two parents take the value of the first parent with probability 1
2 otherwise they

take the value of the second parent.

• P (A = 1) = p, P (C = 1) = q.

All the assumptions made in this section holds for all the three questions below

1. [2 points] CPT Tricks I. If some node X has a single parent Y , and P (Y = 1) = a, what is
a simple expression for P (X = 1)? Please assume that there is no child of X to worry about.

2. [3 points] CPT Tricks II. If some node X has a two independent parents Y,Z, and P (Y =
1) = a, P (Z = 1) = b, what is a simple expression for P (X = 1)? Please assume that there
is no child of X to worry about.

3. [7 points] Forwards Inference. What is P (F = 1) in the above graph?

2.4 [5 points] Conditional Inference

If B = b, F = f are observed, what is the conditional probability that E = 1? For this question
please leave your answer in terms of probability distributions e.g., P (B = b|A = a) etc., but only
those which could be computed directly from the local probabilities in the definition of the Bayes
net.

3 Expectation Maximization [20 points, Derry]

In this question, you are going to derive the Expectation and Maximization equations of the EM
algorithm for optimizing the latent variables involved in generating a text document.

Consider each word as a random variable w that can take values 1, ..., V from the vocabulary of
words. Treat each w as a vector of V components such that w(i) = 1 if the w takes the value of
the ith word in the vocabulary. Hence,

∑V
i w(i) = 1. The words are generated from a mixture of

M discrete topics:

p(w) =

M∑
m=1

πmp(w|µm)

and

p(w|µm) =
V∏
i=1

µm(i)w(i)

where πm denotes the prior for the latent topic variable t = m and µm(i) = p(w(i) = 1|t = m),
thus

∑V
i=1 µm(i) = 1.
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Given a document containing words wj , j = 1, ..., N , where N is the length of the document,
derive the expectation and maximization step equations for the EM algorithm to optimize θ =
{πm, µm(i)}.

Note: Show all the steps in your derivation.

Hints:

• In the expectation step [5 points] , for each word wj , compute Fj(tj) = p(tj |wj ; θ), the
probability that wj belongs to each of the M topic.

• In the maximization step [15 points], compute θ which is the set of parameters of this
mixture model that maximizes the log likelihood of the data

l(w; θ) = log
N∏
j=1

p(wj ; θ)

Summing over the latent topic variable:

l(w; θ) =
N∑
j=1

log
∑
tj

p(wj , tj ; θ)

l(w; θ) =
N∑
j=1

log
∑
tj

Fj(tj)
p(wj , tj ; θ)

Fj(tj)

Using Jensen’s inequality:

l(w; θ) ≥
N∑
j=1

∑
tj

Fj(tj) log
p(wj , tj ; θ)

Fj(tj)
=

N∑
j=1

∑
tj

Fj(tj) log p(wj ; θ) = log p(wj ; θ) = l(w; θ)

Hence compute θ as:

θ := argmaxθ

N∑
j=1

∑
tj

Fj(tj) log
p(wj , tj ; θ)

Fj(tj)

4 Hidden Markov Model [20 points, Zeyu]

As mentioned in class, we are going to derive the formula for learning HMM. Suppose xt is the
random observation at time t and ykt = 1 is the event where the state of time t is k. In class we
derived the forward probability αkt = P (x1...Xt−1, xt, y

k
t = 1) as an iterative function:

αkt = P (xt|ykt = 1)
∑
i

αit−1ai,k (1)
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where ai,k is the transitional probability from state i to k. We also defined the backward probability
as the future observations given the current state:

βkt = P (xt+1...xT |ykt = 1) (2)

The following questions will guide you through the derivation of EM for HMM. Please keep your
notation consistent with the following convention:

• Use uppercase letters to present random variables (e.g. Yt); and use lowercase ones for
particular values(e.g. xt).

• Use ykt = 1 or just ykt to mean the event Yt = (Y 1
t , ..., Y

k−1
t , Y k

t , Y
k+1
t , ..., Y K

t ) = (0, ..., 0, 1, 0, ..., 0)
where Yt is a vector that follows multinomial distribution and Y k

t is the k-th element.

• Transition probability: ai,j = P (yjt = 1|yit−1 = 1)

• Emission Probability: bi,k = P (xkt = 1|yit = 1)

• Assume there are K states and N types of observation.

For the following questions, show clear steps of your work.

1. [4 points] Prove βkt =
∑

i ak,iP (xt+1|yit+1 = 1)βit+1.

2. [2 points] Now we are going to derive the EM algorithm for HMM. Before doing any work,
answer the question: What are the parameters (i.e. Θ) we want to estimate? And what are
the latent variables?

3. [4 points] Now Write the complete likelihood function P (X,Y |Θ). Notes: You may end up
with some function that contains P (Yt = yt|Yt−1 = yt−1) and P (Xt = xt|Yt = yt). However it
is not useful form because Yt|Yt−1 is a huge random matrix containing K ×K elements. So
we need to write P (Yt|Yt−1) as indicator function. Suppose ai,j is the transition probability.

Then p(Yt = i|Yt−1 = j) can be expressed as
∏K
i=1

∏K
j=1 a

yity
j
t−1

j,i where yit is the i-th element

of the vector yt. The term a
yity

j
t−1

j,i is zero unless yit and yjt−1 are one. Similarly, we can define
emission probability bj,k for p(Yt = k|Yt−1 = j) and use the indicator functions to present
P (Xt = xt|Yt = yt).

4. [4 points] Write the formula for expected log likelihood, namely E[l(Θ;X,Y )]. You can also
use “< >” to indicate expectation as shown in class. To check if you are on the right track,
make sure you find the following terms in your derivation. (Note: the correct answer looks a
little like the one on the slides but not exactly the same. So do the derivation yourself and
do not copy and paste)

• γit
def
= E[yit] = p(yit = 1|xn)

• ξijt
def
= E[yit−1y

j
t ] = p(yit−1 = 1, yjt = 1|xn)

[0 points, do not hand it in] Now we are one step close to getting the formula Q(Θ,Θold)
for this EM problem. If you are interested you can follow the steps below to obtain the final
E and M steps for learning a HMM. You may refer to the slides to check your answer.

E step: calculate γit and ξijt based on Θold
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(a) Recall the definition of forward and backward probability. Write γit as a function of αkt
and βkt . (before doing this you may need to consider how to compute p(X) which is a
function of αkt )

(b) Show that P (X|yn, yn−1) = P (x1, ..., xn−1|yn−1)p(xn|yn)p(xn+1, ..., xN |yn)

(c) Use Bayes theorem, and show ξ(yn−1, yn) = α(yn−1)P (xn|yn)p(yn|yn−1)β(yn)/
∑

k α
k
N

M step: show the update rules for πi, ai,j and bi,k as a function of ξijt , γit , and xkt

5. [6 points] Now we are going to adjust the HMM model a little bit to make it more powerful for
some particular circumstance. Suppose at each time point t, we know an additional variable
Zt, and for each different value Zt = z the transition probability ai,j is different (we can call
it ai,j|z). This model is very useful in practice. For example in recognizing hand gestures,
Zt defines a group of gestures with similar properties. The value of each zt is computed
using other algorithms (for example K-means). Having this additional variable decreases the
complexity of hidden layers and thus increases the convergence rate when training this model.
However, this model cannot over-perform HMM when the transitional matrices given Zt = z
are similar for all values of z.

(a) [2 points] Based on the information above, draw the Bayesian Networks for this new
HMM model. (Assume the observation Xt does not depend on Zt)

(b) [2 points] What is the complete likelihood, P (X,Y, Z) of this new model?

(c) [2 points] Suppose the variable Zi takes n different values and there are m states in the
hidden layer. How many states does an ordinary HMM need to have to be equivalent to
this new model? Provide your reasoning.
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