10-701 Machine Learning, Fall 2012: Homework 3 Solutions

1 Clustering [35 points, Martin]

1.1 [25 points] K-means

In K-means clustering, we are given points x1, ..., z, € R% and an integer K > 1, and our goal is to
minimize the within-cluster sum of squares (also known as the k-means objective)

J(C,L) =Y ||z = Co, )
i=1

where C = (C1,...,Ck) are the cluster centers (C; € R?), and L = (¢4, ...,£,) are the cluster
assignments (¢; € {1,..., K}).

Finding the exact minimum of this function is computationally difficult. The most common al-
gorithm for finding an approximate solution is Lloyd’s algorithm, which takes as input the set of
points and some initial cluster centers C, and proceeds as follows:

i. Keeping C fixed, find cluster assignments L to minimize J(C,L). This step only involves
finding nearest neighbors. Ties can be broken using arbitrary (but consistent) rules.

ii. Keeping L fixed, find C to minimize J(C, L). This is a simple step that only involves averaging
points within a cluster.

iii. If any of the values in L changed from the previous iteration (or if this was the first iteration),
repeat from step i.

iv. Return C and L.

The initial cluster centers C' given as input to the algorithm are often picked randomly from
x1,...,Tn. In practice, we often repeat multiple runs of Lloyd’s algorithm with different initializa-
tions, and pick the best resulting clustering in terms of the k-means objective. You're about to see
why.

(a) [3 points] Briefly explain why Lloyd’s algorithm is always guaranteed to converge (i.e. stop)
in a finite number of steps.

Answer: The cluster assignments L can take finitely many values (K™, to be precise). The
cluster centers C' are uniquely determined by the assignments L, so after executing step ii the
algorithm can be in finitely many possible states. Thus either the algorithm stops in finitely
many steps, or at least one value of L is repeated more than once in non-consecutive iterations.
However, the latter case is not possible, since after every iteration we have J (C(t),L(t)) >



J(CHD | LD with equality only when L®) = L+ which coincides with the termination
condition. (Note that this statement depends on the assumption that the tie-breaking rule

used in step i is consistent, otherwise infinite loops are possible.)

[5 points] Implement Lloyd’s algorithm. Run it until convergence 200 times, each time initial-
izing using K cluster centers picked at random from the set {z1,...,z,}, with K =5 clusters,
on the 500 two dimensional data points in http://www.cs.cmu.edu/~epxing/Class/10701/
HW/hw3-cluster.csv. Plot in a single figure the original data (in gray), and all 200 x 5 clus-
ter centers (in black) given by each run of Lloyd’s algorithm. You can play around with the
plotting options such as point sizes so that the cluster centers are clearly visible. Also com-
pute the minimum, mean, and standard deviation of the within-cluster sums of squares for the

clusterings given by each of the 200 runs.

Answer: Minimum: 222.37, mean: 249.66, standard deviation: 65.64. Plot in Figure 1. R

code:

require(fields)

lloyd <- function(X,K) {

C <- X[sample.int(nrow(X), size = K, replace =
L <- rep(0,nrow(X))

L.old <- rep(-1,nrow(X))

while(any(L!=L.old)) {

L.old <- L

L <- apply(rdist(X,C),1,which.min)

C <- t(sapply(1:K,function(i) apply(subset(X,L==i),2,mean)))

}

return(list(cluster=L, centers=C))

}

within.sum.squares <- function(X,clustering) {

return(sum((X-clustering$centers[clustering$cluster,])"2))

}

X <- as.matrix(read.csv("hw3-cluster.csv",header=F))

dimnames (X) [[2]]<-NULL

nstart <- 200

K <-5

centers.all <- c()

within.ss <- rep(O,nstart)

for(i in 1:nstart) {

cs <- lloyd(X,5)

centers.all <- rbind(centers.all,cs$centers)
within.ss[i] <- within.sum.squares(X,cs)

}

cat(paste("Minimum: ",round(min(within.ss),2),", mean:

" round(mean(within.ss),2),",

standard deviation: ",round(sd(within.ss),2),"\n",sep=""))



Figure 1

plot(X,col=8,pch=20,xlab="",ylab="")
points(centers.all)

(c) [4 points] Kmeans++ is an initialization algorithm for K-means proposed by David Arthur
and Sergei Vassilvitskii in 2007:

iii

. Pick the first cluster center Cy uniformly at random from the data z1,...,x,. In other

words, we first pick an index ¢ uniformly at random from {1,...,n}, then set Cy = x;.

.Forj=2,.. K:

e For each data point, compute its distance D; to the nearest cluster center picked in a
previous iteration:

D;= mi = Cy.
= i b= O

e Pick the cluster center C; at random from x4, ..., z, with probabilities proportional to
D2, ..., D2. Precisely, we pick an index i at random from {1,...,n} with probabilities
equal to D}/(}0,_ D2),...,D2/(30,_; D2), and set C;j = w;.

. Return C' as the initial cluster assignments for Lloyd’s algorithm.

Replicate the figure and calculations in part (b) using Kmeans++ as the initialization algo-
rithm, instead of picking C' uniformly at random.

Answer: Minimum: 222.37, mean: 248.33, standard deviation: 64.96. Plot in Figure 2. R
code:

lloyd.kmeanspp <- function(X,K) {

C <- rbind(X[sample.int(nrow(X), size = 1),])

for(j in 2:K) {

C <- rbind(C,X[sample.int (nrow(X),size=1,prob=apply(rdist(X,C),1,min)"2),])

}

L <- rep(0,nrow(X))
L.old <- rep(-1,nrow(X))



Figure 2

while(any(L!'=L.0ld)) {

L.old <- L

L <- apply(rdist(X,C),1,which.min)

C <- t(sapply(1:K,function(i) apply(subset(X,L==1),2,mean)))
}

return(list(cluster=L, centers=C))

}

centers.all <- c()

within.ss <- rep(0,nstart)

for(i in 1:nstart) {

cs <- lloyd(X,5)

centers.all <- rbind(centers.all,cs$centers)
within.ss[i] <- within.sum.squares(X,cs)

}

cat(paste("Minimum: ",round(min(within.ss),2),", mean: ",round(mean(within.ss),2),",
standard deviation: ",round(sd(within.ss),2),"\n",sep=""))

plot(X,col=8,pch=20,xlab="",ylab="")
points(centers.all)

Hopefully your results make it clear how sensitive Lloyd’s algorithm is to initializations, even in
such a simple, two dimensional data set!

Picking the number of clusters K is a difficult problem. Now we will see one of the most common
heuristics for choosing K in action.

(d) [3 points] Explain how the exact minimum of the k-means objective behaves on any data
set as we increase K from 1 to n.

Answer: The exact minimum decreases (or stays the same) as K increases, because the set
of possible clusterings for K is a subset of the possible clusterings for K + 1. With K = n,
the objective of the optimal solution is 0 (every point is in its own cluster, and has 0 distance
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Figure 3

to the cluster center).

A common way to pick K is as follows. For each value of K in some range (e.g. K =1, ...,n, or some
subset), we find an approximate minimum of the k-means objective using our favorite algorithm
(e.g. multiple runs of randomly initialized Lloyd’s algorithm). Then we plot the resulting values
of the k-means objective against the values of K. Often, if our data set is such that there exists a
natural value for K, we see a “knee” in this plot, i.e. a value for K where the rate at which the
within-cluster sum of squares is decreasing sharply reduces. This suggests we should use the value
for K where this knee occurs. In the toy example in Figure 5, this value would be K = 6.

(e) [3 points] Produce a plot similar to the one in Figure 5 for K =1, ..., 15 using the data set
in (b), and show where the “knee” is. For each value of K, run k-means with at least 200
initializations and pick the best resulting clustering (in terms of the objective) to ensure you
get close to the global minimum.

Answer: Plot in Figure 3. The knee is at K = 5.

(f) [3 points] Repeat part (e) with the data set in http://www.cs.cmu.edu/~epxing/Class/
10701/HW/hw3-cluster2.csv. Find 2 knees in the resulting plot (you may need to plot the
square root of the within-cluster sum of squares instead, in order to make the second knee
obvious). Explain why we get 2 knees for this data set (consider plotting the data to see
what’s going on).

Answer: Plot in Figure 4 (square root of objective plotted). The knees are at K = 3 and
K = 9. These are two values because the data are composed of 3 natural clusters, each of
which can further be divided into 3 smaller clusters.

We conclude our exploration of k-means clustering with the critical importance of properly scaling
the dimensions of your data.

(g) [2 points] Load the datainhttp://www.cs.cmu.edu/~epxing/Class/10701/HW/hw3-cluster3.
csv. Perform k-means clustering on this data with K = 2 with 500 initializations. Plot the
original data (in gray), and overplot the 2 cluster centers (in black).

Answer: See Figure 6.
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Figure 7

(h) [2 points] Normalize the features in this data set, i.e. first center the data to be mean 0
in every dimension, then rescale each dimension to have unit variance. Repeat part (g) with
this modified data.

Answer: See Figure 7.

As you can see, the results are radically different. You should not take this to mean that data should
always be normalized. In some problems, the relative values of the dimensions are meaningful and
should be preserved (e.g. the coordinates of earthquake epicenters in a region). But in others, the
dimensions are on entirely different scales (e.g. age in years v.s. income in thousands of dollars).
Proper pre-processing of data for clustering is often part of the art of machine learning.

1.2 Hierarchical clustering [10 points]

Agglomerative hierarchical clustering is a family of hierarchical clustering algorithms that, equipped
with a notion of distance between clusters, form a binary tree with leaves for each original data
point as follows:

i. Initialize by placing each data point in its own cluster (i.e. singleton trees).

ii. Find the two closest clusters, join them in a single cluster (by creating a new node and making
it the parent of the roots of those two clusters).

iii. If there are more than one clusters (trees) left, repeat from step i.
iv. Return the final tree.

Some of the most common metrics of distance between two clusters {z1,...,zn} and {y1,...,yp}
are:

e Single linkage: Distance between clusters is the minimum distance between any pair of points
from the two clusters, i.e.
min [z — y;;
1=1,....m
j: 7"'7p



Also,

Complete linkage: Distance between clusters is the mazimum distance between any pair of
points from the two clusters, i.e.

max |[z; — y;;

i=1,....m

goony

jzl"“»p

Awverage linkage: Distance between clusters is the average distance between all pair of points

from the two clusters, i.e.
m p

=3 -l

i=1 j=1

given a clustering tree, we can define a partitioning of the data into K clusters by “cutting”

the tree some number of levels below the root. For example, if K = 2 we could define two clusters
based on the left and right subtrees of the root of the clustering tree. If K = 4, we could use the
subtrees of the children of the root, etc. (Note that if K is not a power of 2 we would need to come
up with some way of deciding which subtree gets preference.)

(a)

[3 points] Using this procedure for turning a hierarchical clustering into a partition, which of
the three cluster similarity metrics described above would most likely result in clusters most
similar to those given by k-means? (Assume K is a power of 2).

Answer: Average linkage.

[4 points| Consider the data in Figure 8a. What would be the result if we extracted K = 2
clusters from the tree given by hierarchical clustering on this data set using single linkage?
(Describe your answer in terms of the labels 1 — 4 given to the four “clumps” in the data.)
Do the same for complete and average linkage.

Answer: Average and complete linkage would assign “clumps” 1 and 3 to the first cluster,
and 2 and 4 to the second. Single linkage would assign 1 and 2 to one cluster, 3 and 4 to the
other.

[3 points] Which of those three distance metrics (if any) would successfully separate the two
“moons” in Figure 8b7 What about Figure 8c? Briefly explain your answer.

Answer: Single linkage would successfully separate the two moons in Figure 8b, average and
complete linkage would not. None of the methods would work in Figure 8c.

2 Bayesian Network [25 points, Avi]

This problem will concern the Bayesian network in Figure 9.

2.1

[3 points| Joint Probability

Write down the factorization of the joint probability distribution over A, B,C, D, E, F' which cor-
responds to this graph.

Answer:-

P(A,B,C,D,E, F,G) = P(A)P(B|A)P(C)P(D|B)P(E|B,C)P(F|D, E) (1)
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2.2 [5 points] conditional independence
For every pair of nodes in the graph say whether each of them are independent of each other or
not. Also test conditional independence for each pair except F when F' is observed

Answer:- (A,C), (B,C) and (C, D) are independent when nothing is observed. Nothing is inde-
pendent when F' is observed

2.3 [12 points] Inference
For this section we suppose that all the variables are binary, taking on the values 0,1. The condi-
tional probability distributions on the graph have the following form:

e Nodes with a single parent take the value of their parent with probability § otherwise they
take the other value.

e Nodes with two parents take the value of the first parent with probability 5 otherwise they
take the value of the second parent.

e P(A=1)=p, P(C=1)=q.
All the assumptions made in this section holds for all the three questions below

1. [2 points] CPT Tricks I. If some node X has a single parent Y, and P(Y = 1) = a, what is
a simple expression for P(X = 1)? Please assume that there is no child of X to worry about.



Answer:-

=0)+P(X

=1y = 1)P(Y

1)

[3 points] CPT Tricks II. If some node X has a two independent parents Y, Z, and P(Y =

1) =a, P(Z =1) = b, what is a simple expression for P(X = 1)? Please assume that there

is no child of X to worry about.

=1Y =1,Z=0)P(Y

=1y =1, Z_l)P(Y

Answer:-
P(X=1) = P(X=1]Y =0,Z=0)P(Y =0)P(Z =0) + P(X
P(X —1]Y—OZ NPY =0)P(Z=1)+P(X
1
= O—i-ia(l—b) (1—a)b+ab
1 1
3. [7 points] Forwards Inference. What is P(F = 1) in the above graph?
Answer:-
1 1
P(B=1) = =-+=
( ) L
1 1
PD=1) = -+-P(B=1
(D=1) = ;+3P(B=1)
R
s
P(E=1) = %P(B —1)+ %P(C _ 1)
U
g APt
1 1
P(F=1) = SP(D=1)+;P(E=1)
= S iyl
T A T L
U
oa Pyt
2.4 [5 points] Conditional Inference

If B=0b,F = f are observed, what is the conditional probability that £ = 1?7 For this question
please leave your answer in terms of probability distributions e.g., P(B
those which could be computed directly from the local probabilities in the definition of the Bayes

net.

10

= bJA = a) etc., but only



Answer:-

1
B B B S yP(F=fID=d,E=e)P(D=dB=bP(E=¢|/B=0,C=c)
PE=11B=bF=f)= ;Z P(F=f|D=d,E=¢)P(D=dB=bPE=¢B=0bC=c)

P(C =c¢)

3 Expectation Maximization [20pt, Derry]|

1. [15 points] In this question, you are going to derive the Expectation and Maximization
equations of the EM algorithm for optimizing the latent variables involved in generating a
text document.

Consider each word as a random variable w that can take values 1, ...,V from the vocabulary
of words. Treat each w as a vector of |V| components such that w(i) = 1 if the w takes the
value of the 7" word in the vocabulary. Hence, ) w(i) = 1. The words are generated from
a mixture of M discrete topics:

M
= Z me(w‘,um)
m=1

and

|4

p(w‘:um) = H Nm(z)w(z)

i=1
where 7,,, denotes the prior for the latent topic variable ¢t = m and p,, (i) = p(w(i) = 1|t = m),

thus SV, g (i) = 1.

Given a document containing words w;, j = 1,..., N, where N is the length of the document,
derive the expectation and maximization step equations for the EM algorithm to optimize
T and i, (7).

Note: Show all the steps in your derivation.
Hints:

e In the expectation step [5 points] , for each word w;, compute F}(t;) = p(tjw;;0), the
probability that w; belongs to each of the M topic.

Answer:

11



Fi(t;=m) = p(t; = m|w;;0)
p(wj|t; = m; O)p(t; = m|0)
p(w;|0)
T P(Wj fm )
Z%:l T P(W; | Hm)
Tm H;/zl ,Um(l)wj(l)
Zr]\r{/:l T Hlvzl /‘m’(l)wj(l)

e In the maximization step [10 points|, compute 6 which is the set of parameters of this
mixture model that maximizes the log likelihood of the data

N
0) = log | [ p(w;:6)
j=1
Summing over the latent topic variable:

N

l(w;0) = ZZOQZ p(wj, t;;0)
J=1 t

ZlOQZ By w],t)ﬂ)
tj

Using Jensen’s inequality:

Hence compute 0 as:

;6
0 := argmaxy ZZF ti) 1 71”3’ :9)
peciry Fj(t5)

Answer:

12



ol p(w;, t; =m;0)
0 := argmaxy Z Fi(tj=m)l Fi’(tj — ’m;
7=1
N
= argmazy Z F;(t; =m) log p(w;, t; = m;8)
j=1

N
= argmazy Z F;(t; = m) log p(w;|t; = m;0) p(t; =m;0)

N \%4
= argmazy Z Fj(t; =m) log mp, H L (1))
=1

M<

N
= argmazy Z (Fj(tj =m) log Tm + Fj(t; =m) » log pm(1)" (l)>

N
Il
_

M<

N
= argmazy Z (Fj(tj =m) log mm + Fj(t; =m) Y w;(l) log ,um(l)>

l

Il
—

To optimize g, (1): first eliminate terms that are constant with respect to pip,:

1) log pim/(1)

|M<

N
N

j=1 =

Use a Lagrangian to constrain pu,, to be a probability distribution:

Vv Vv
L{pm () =Y Fi(t; =m) > w;(l) log pm(l) + B <Z (1) — 1)
=1 =1

0 - (1)
— (=) i _
aum(l) E(ﬂm(l)) = ;Fj(tj ) ,Um(l) + B 0
1 N
m =
j 1 ) i
pn T Byl =m) w0
N i\t;s = MmMm)w

() = Z]:l FJ(tJ_B— ) w; (1)

13



Knowing that ZYZI tm (1) = 1 we have:

Hence, substituting for —g:

S Fy(ty = m) w;(l)

ml =
pn 1) Sy Sy Fy(ty = m) wy(D)

Since Y., w; (1) = 1:

_ S Fy(ty = m) w;(l)

m({
ponll) S Fi(ty =m)

Intuitively this can be interpreted as the portion that had w(l) = 1 among the mass that
was deemed to belong to cluster m.

Similarly, to optimize m,,, begin by removing terms that are constant with respect to
T

N
ZFj(tj =m) log T,
j=1

Using the Lagrangian with the constraint that Z%Zl T =1

N M
L(mm) =Y Fj(t; =m) log mm + B (Z Tm — 1)
m=1

Jj=1

Solving for m,,:

14



j=1
N
ZFj(tj :m) = —Bmm
j=1
o Sy Fy(ty =m)
" —B
Since Zi\le Tm = 1
% il Fi(ty=m) .
m=1 _B
| M N
52 2 Blti=m) =1
m=1 j=1
M N
-6 = Y D Filtj=m)
m=1 j=1
Substituting for —3 we get:
- SN Ei(ty =m) B S Fity =m)
Zn]\f{:l Ejvzl Fj(t; =m) N

Intuitively this can be interpreted as the portion that belongs to cluster m among the
total of N examples.

4 Hidden Markov Model [20 points, Zeyu]

1. Backward probability

2. Parameters: emission probability a; j, transition probability b; ;, and starting state probability
m foralli,j=1,2,... Kand k=1,2,.... M

3. The complete likelihood function

T

P(X,Y10) = p(yr) [ [ pwelg—1)p(zly) (2)
t=2

15



BE=P(X, 10 Xr | yf =1)
=2, POy XX | ¥ =1)
= P =y =DpG | Vi =Ly =DPXyprs Xy | Xy Vi =Ly =1)
=2 P =y = 0P | i =DP(K e Xy g =1)
=>4, PXe | i = DB

Write it in the suggested form

K _ T K K i T K M i
Px,v1e) =[]~ < QTTITL 5" < ATTTTT o) (3)
=1 t=2i=1j=1 t=1:=1k=1

4. Take the log

T K K
log(P(X,Y|0) = Zyllogm —}—ZZZytyt 1loga”+22ytlogbmt 4)

t=2 i=1 j=1 t=1 i=1
And add the expectation

T K

K K K
<log(P(X,Y|0) >= (D <ui >logm)+> > > <ylyiy >logay+» > <yi>loghis,

i=1 t=2 i=1 j=1 t=1 i=1
()

Note that Q(0,0°%) =< log(P(X,Y[0) >= [, p(Z|X,0)logP(X,Y|©°4)
5. The so-called adjusted HMM in this question is actually a simplified [OHMM
(a) Bayesian network of IOHMM is shown in Figure 10(a

(a) Simplified [OHMM (b) Standard IOHMM

Figure 10: Bayesian network of an Input-output hidden markov model

(b) Complete probability (likelihood) is

T

P(X,Y,2|0) = p(yi|210)p(21) [ [ p(z)p(yilye—1, 20)p(ilye) (6)
t=2

16



Note: many of you forgot p(z;). If without this term, an IOHMM will go back to an
HMM (why?).

(c) how many states? mn (just think of automata multiplication). Answering n?m transi-
tions or coefficients is also acceptable.
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