
10-701 Machine Learning, Fall 2012: Homework 4

Due Wednesday 11/28 at the beginning of class.

Instructions (important): Remember to submit your solution to each problem separately
in different piles on the table at the front of the classroom at the beginning of class on the day
the homework is due. At the top of the first page of each solution you hand in, clearly write the
class number (10701), the number of the problem (i.e. “Problem 1”, “Problem 2”, etc.), your
first and last name (assuming you have both), and your Andrew ID.

1 Graphical models 2 (Zeyu, 30 points)

1.1 Short questions (14 points)

1. [2 points] Show that a ⊥ (b, c)|d implies a ⊥ b|d

2. [4 points] Using the d-separation criterion, show that the conditional distribution for a node
x in a directed graph, conditioned on all of the nodes in the Markov blanket, is independent
of the remaining variables in the graph.

3. [8 points] Reversing the direction of all the arrows in a GM might give us the same GM, but
sometimes it does not. Consider the following simple cases and identify what is the differ-
ence (about the independence/conditional independence among all these points) between the
reversed GM and original one? Fill in the form below. Do not put duplicated independency
statement in the same row (you may refer to the fact a ⊥ (b, c)|d⇒ a ⊥ b|d as in question 1)
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No. the same? original model new model

(a) Yes

(b) No X ⊥ Y X ⊥ Y |Z
(c)

(d)

(e)

(f)

1.2 Exact Inference (7 points)

In this question we are going to apply variable elimination over a tree structure. Consider the
Bayesian Tree in figure 1. Assume each node takes the m values {v1, ..., vn}, and all the local
probability are known, i.e. p(g), p(c|g, h), p(a|b, c, d), etc

Figure 1: Bayesian Tree for question 2

1. [3 points] write the the following message function in terms of local probabilities and its
precedence (e.g. mgc and mhc precedes mca in message passing)

(a) mhc(vi) = p(h) = ?

(b) mca(vi) = p(c) = ?

(c) mar(vi) = p(a) = ?

2. [4 points] write the following conditional inference problem in terms of local probability and
message function. Make your formula as compact as possible.

(a) P (r = vi)

(b) P (g = vi|r = vj)
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1.3 Stochastic Inference (9 points)

Recall Gibbs sampling algorithm and consider the butterfly-shaped Bayesian network in Figure 2.
Assume all the nodes take binary values.

Figure 2: Find the Markov blanket of X

1. [3 points] What’s the Markov Blanket, MB(X), of node X?

2. [4 points] Show how do you calculate the MCMC update probability p(X|MB(X)) using
given local probability where MB(X) is the Markov blanket of node X

3. [2 points, open question] Suppose (G = 1) is a very rare event p(G = 1) < 0.0001. but
we have to deal with inference query that involve G=1. How can you modify Gibbs sampling
method to avoid sampling too many samples? Show your idea for the following two scenarios.

(a) G = 1 is in the condition (e.g. P (A = 0, E = 1|G = 1))

(b) G = 1 is the main event (e.g. P (G = 1|E = 1)).

2 Learning Theory [20 points, Martin]

2.1 VC dimension [10 points]

Recall that, given a hypothesis space H defined over an instance space X, the Vapnik–Chervonenkis
dimension VC(H) is defined to be the largest integer such that there exists a subset x1, ..., xVC(H) ∈
X that is shattered by H (i.e. for any binary labeling of x1, ..., xVC(H) there exists a hypothesis
h ∈ H that is consistent with that labeling). Thus, in order to prove that the VC dimension of a
hypothesis space H is some integer d, we must prove both that there exists a subset of X of size
d that is shattered by H, and that for any D > d there exist no subsets of X of size D that are
shattered by H. The latter task can seem daunting – not only do we have to prove that all subsets
of X of size D are not shattered by H, but we must also prove this for all D > d. The following
result can make this much easier:
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(a) [5 points] Prove that if there exists a subset of X of size d (for some integer d) that is
shattered by H, then for any 1 ≤ k < d there also exists a subset of size k of X that is
shattered by H.

The above claim implies that if no subset of size d is shattered, then no subset of size D > d is
shattered either. Hence, to prove that the VC dimension of H is d, it is sufficient to find some
subset of X of size d that is shattered, and to prove that no subset of size d+ 1 is shattered.

(b) [5 points] Let X = R (one dimension). Let H be the set of all classifiers h that, for some
set of non-intersecting intervals R1, ..., Rp, classify a point x as h(x) = 1 if x ∈

⋃p
i=1Ri, and

h(x) = 0 otherwise (p is fixed and given). Find VC(H) (prove your answer is correct).

2.2 Structural risk minimization [10 points]

Recall the PAC bound using VC dimension: given a hypothesis class H and m training samples,
with probability ≥ 1− δ, for all h ∈ H

|errortrue(h)− errortrain(h)| ≤ ε(H,m, δ)

where

ε(H,m, δ) = 8

√√√√VC(H)
(

ln m
VC(H) + 1

)
+ ln 8

δ

2m
.

In class you saw how we can use this to bound the true error of the empirical risk minimizer
ĥ = argminh∈H errortrain(h); with probability ≥ 1− δ,

errortrue(ĥ) ≤ errortrain(ĥ) + ε(H,m, δ)

≤ errortrain(h∗) + ε(H,m, δ)

≤ errortrue(h
∗) + 2ε(H,m, δ)

where h∗ = argminh∈H errortrue(h) is the true risk minimizer.

Given a set of hypothesis classes H1, H2, ...,HK (K possibly infinite) with VC(H1) ≤ VC(H2) ≤
... ≤ VC(HK), structural risk minimization is the following procedure. First for each k = 1, ...,K
we find the empirical risk minimizer ĥk = argminh∈Hk

errortrain(h) within Hk. Then we find

k̂ = argmin
k=1,...,K

(
errortrain(ĥk) + ε(Hk,m, δk)

)
,

(for some δ1, ..., δK), and the structural risk minimizer is ĥ = ĥ
k̂
.

Another possible procedure would be to simply use the empirical risk minimizer in the union of
H1, ...,HK . In the next two problems, we’ll try to see why structural risk minimization might be a
better idea.

(a) [5 points] Let
ĥunion = argmin

h∈
⋃K

k=1Hk

errortrain(h)

and
h∗union = argmin

h∈
⋃K

k=1Hk

errortrue(h).
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Show an upper bound on errortrue(ĥunion) in terms of errortrue(h
∗
union) (and some other terms)

that holds with probability ≥ 1 − δ for given δ. How does your bound simplify in the case
that H1 ⊆ H2 ⊆ ... ⊆ HK?

Let Hk be the set of “interval classifiers” (as defined in Problem 2.1(b)) with up to k intervals,
and let K = 100. Give a lower bound on the number of samples m needed that is sufficient
to guarantee that errortrue(ĥunion)− errortrue(h

∗
union) ≤ 0.25 with probability at least 0.95.

(b) [5 points] Give a lower bound on the number of samples m so that the structural risk
minimizer ĥ

k̂
, computed using δ1 = ... = δK = 0.05/100 on the sequence of hypothesis spaces

defined in part (a), satisfies errortrue(ĥk̂) − errortrue(h
∗
union) ≤ 0.25 with probability at least

0.95, assuming that h∗union ∈ H5.

3 Boosting [25pt, Derry]

Consider a stepwise algorithm A:

Input parameters: T , H, φ

Initialize the classifier f0(x) = 0

for t = 1 to T do:

1. Compute

(ht, αt) = argminα∈R,h∈H

m∑
i=1

φ(yi, ft−1(xi) + αh(xi))

2. Update the classifier

ft(x) = ft−1(x) + αtht(x)

end for

return the classifier sign(fT (x))

The intuition is that, at each step, the algorithm greedily adds a hypothesis h ∈ H to the current
hypothesis to minimize the φ-risk.

1. [5 pts] What would be the form of φ(y, y′) that will make algorithm A equivalent to Ad-
aBoost?

2. [10 pts] Using the risk function you have defined above, prove that AdaBoost is equivalent
to algorithm A.

Hint: Work out the value of ht that will minimize the risk function φ(y, y′) for any fixed
value of α > 0 (further hints: ht is not a function on α). Then, given this ht find the αt
that will minimize the risk function φ(y, y′). Think also how the weights Dt(i) in AdaBoost
is related to algorithm A.
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3. [10 pts] Now consider a more general algorithm where ht ∈ H from t = 1 to T be any
arbitrary sequence of classifiers. Let {xi, yi}mi=1 be a training set of m observations. Starting
with f0 = 0, ft is recursively defined as ft =

∑t
i=1 αihi and αt = β log 1−εt

εt
where

εt =
m∑
i=1

Dt−1(i)1{yi 6= ht(xi)}

which is the weighted training error of the classifier ht. Prove that for all T :

m∑
i=1

1

m
exp (− 1

β
yifT (xi)) = 1

which implies that any sequence of classifiers can be combined linearly to form a good com-
bination while maintaining a constant exponential loss on the data.

4 PCA [Avi 25 pts]

In this question we will try to understand PCA by showing two cool ways of interpreting the first
principal component. One is the direction of maximum variance after projection and the second is
the direction that minimizes reconstruction error. Note that the first principal component is the
first eigenvector of the sample covariance matrix.

Consider n points X1, ..., Xn in p-dimensional space, and let X be the n × p matrix representing
these points. Assume that the data points are centered, ie, ~1>X = ~0. Consider a unit vector v ∈ Rp
and project all the points onto this vector (hence every point becomes a one-dimensional point on
the direction of unit vector v).

1 [1 pt] Argue that the projection is given by Xv.

2 [2 pt] What is the sample mean of all the points after the projection?

3 [2 pt] What is the sample variance of all the points after the projection?

4 [2 pt] Setup the problem of maximizing the sample variance of the projection onto v subject
to a constraint on the L2-norm of v.

5 [4 pt] Solve the minimization problem to show that the solution is the first PC. (Hint: take the
Lagrangian of the above problem, differentiate and substitute to zero, to get to the optimum
solution)

So we have now proved that the direction of maximum covariance is the first PC. Now we show
that the direction that minimizes reconstruction error is also the first PC.

6 [1 pt] Argue that the reconstruction of Xi using v is (X>i v)v.

7 [2 pt] You projected Xi to X>i v and then reconstructed it using (X>i v)v. What is the
reconstruction error of Xi, when measured in L2-norm?
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8 [2 pt] What is the total squared reconstruction error over all points?

9 [2 pt] Show that minimizing total squared reconstruction error is equivalent to minimizing
−‖Xv‖22.

10 [4 pt] Solve the minimization problem to show that the solution is the first PC. (Hint: take the
Lagrangian of the above problem, differentiate and substitute to zero, to get to the optimum
solution)

4.1 [3 pts] SVD and PCA

Let us define a new variable Y as

Y = XT (1)

where X is a n × p matrix containing the data points as defined before. If the SVD of Y is given
by Y = UΣV T then show that the columns of V are the PCA of X.
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