
10-701 Machine Learning, Fall 2012: Homework 4 Solutions

1 Graphical models 2 (Zeyu, 25 points)

1.1

1. Proof: a ⊥ (b, c)|d ⇒ p(a, b, c|d) = p(a|d)p(b, c|d)

⇒
∑

c p(a, b, c|d) =
∑

c p(a|d)p(b, c|d) = p(a|d)
∑

c p(b, c|d)

⇒ p(a, b|d) = p(a|d)p(b|d)

2. Assume x is a node in the graph. Consider the following three cases:

• Paths going through the parent of x:

A → c → x : head-to-tail, A and x are d-separated by c

A ← c → x : tail-to-tail, A and x are d-separated by c

• Paths pointing to the parent of the children of X:

A ← c ← x : head-to-tail, A and x are d-separated by c

• Paths going through the co-parent (node e) of the children of X:

A ← e → c ← x : tail-to-tail at e, A and x are d-separated by e

A → e → c ← x : head-to-tail at e, A and x are d-separated by e

3. (a) Yes.

(b) No: X ⊥ Y vs. X ⊥ Y |A

(c) No: X ⊥ Y |(A,B) vs. X ⊥ Y |A, A ⊥ B|X vs. A ⊥ B|(X,Y )

(d) No: X ⊥ Y |B vs. X ⊥ Y |A

1.2 Exact Inference

1. (a) mhc(vi) = p(h = vi)

(b) mca(vi) = p(c = vi) =
∑

g,h p(c = vi|g, h)p(g)p(h) =
∑

g,h p(c = vi|g, h)mgc(g)mhc(h)

(c) mar(vi) = p(a = vi) =
∑

b,c,d p(a = vi|b, c, d)mba(b)mca(c)mda(d)

2. (a) p(r = vi) =
∑

a p(r = vi|a)mar(a)
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(b)

p(g = vi|r = vj) =
p(g = vi, r = vj)∑
vi
p(g = vi, r = vj)

p(g = vi, r = vj) =
∑

a,b,c,d,h

p(r|a)p(a|b, c, d)mba(b)p(d)p(c|g, h)p(g)p(h)

1.3 Stochastic Inference

1. Markov Blanket: A,B,C,D,E,F

2. Calculating p(X|MB(X)) can be efficient using variable elimination

p(X|MB(X)) =
p(X,MB(X))∑

x p(X = x,MB(X))

p(X = x,MB(X)) = p(A|B, x)p(C|x,D)p(x|E,F )×
∑

g p(g)p(D|g)×
∑

j p(j)p(B|j)

Finally,

p(X|MB(X)) =
p(A|B, x)p(C|x,D)p(x|E,F )∑
x p(A|B, x)p(C|x,D)p(x|E,F )

Since calculating X|MB(X) is very efficient (only one-level summation), it reduces the com-
plexity of Gibbs sampling to O(D2 +n) where D is the number of nodes; and n is the number
of samples.

3. Open question

(a) Just fix G = 1 when calculating p(X = x,MB(X))

(b) Use weighted sampling

2 Learning Theory [20 points, Martin]

2.1 VC dimension [10 points]

Recall that, given a hypothesis space H defined over an instance space X, the Vapnik–Chervonenkis
dimension VC(H) is defined to be the largest integer such that there exists a subset x1, ..., xVC(H) ∈
X that is shattered by H (i.e. for any binary labeling of x1, ..., xVC(H) there exists a hypothesis
h ∈ H that is consistent with that labeling). Thus, in order to prove that the VC dimension of a
hypothesis space H is some integer d, we must prove both that there exists a subset of X of size
d that is shattered by H, and that for any D > d there exist no subsets of X of size D that are
shattered by H. The latter task can seem daunting – not only do we have to prove that all subsets
of X of size D are not shattered by H, but we must also prove this for all D > d. The following
result can make this much easier:

(a) [5 points] Prove that if there exists a subset of X of size d (for some integer d) that is
shattered by H, then for any 1 ≤ k < d there also exists a subset of size k of X that is
shattered by H.
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Answer: Suppose x1, ..., xd ∈ X are shattered by H. Consider the set of points x1, ..., xk.
Let l1, ..., ld−1 ∈ {0, 1} be any labeling of those points. Let lk+1, ..., ld = 0. Since the d
original points are shattered by H, there exists h ∈ H such that h(xi) = li for i = 1, ..., d. In
particular, the same holds true if we only consider i = 1, ..., k. Hence x1, ..., xk are shattered
by H.

The above claim implies that if no subset of size d is shattered, then no subset of size D > d is
shattered either. Hence, to prove that the VC dimension of H is d, it is sufficient to find some
subset of X of size d that is shattered, and to prove that no subset of size d+ 1 is shattered.

(b) [5 points] Let X = R (one dimension). Let H be the set of all classifiers h that, for some
set of non-intersecting intervals R1, ..., Rp, classify a point x as h(x) = 1 if x ∈

⋃p
i=1Ri, and

h(x) = 0 otherwise (p is fixed and given). Find VC(H) (prove your answer is correct).

Answer: Consider any set of points x1 < ... < x2p. Each pair of points x2i−1, x2i can be
shattered with the i’th interval for i = 1, ..., p, without affecting the rest. One possible way of
doing this is to use Ri = (x2i−1, x2i), Ri = [x2i−1, x2i), Ri = (x2i−1, x2i], and Ri = [x2i−1, x2i].
So x1, ..., x2p can be shattered.

Now consider x1 < ... < x2p+1 (note that any set of 2p + 1 points can be reordered in this
form, so we have not lost generality). Label the odd-indexed points 1, and the rest 0. It is
quite easy to verify that no classifier in H can be consistent with this labeling.

So, VC(H) = 2p.

2.2 Structural risk minimization [10 points]

Recall the PAC bound using VC dimension: given a hypothesis class H and m training samples,
with probability ≥ 1− δ, for all h ∈ H

|errortrue(h)− errortrain(h)| ≤ ε(H,m, δ)

where

ε(H,m, δ) = 8

√√√√VC(H)
(

ln m
VC(H) + 1

)
+ ln 8

δ

2m
.

In class you saw how we can use this to bound the true error of the empirical risk minimizer
ĥ = argminh∈H errortrain(h); with probability ≥ 1− δ,

errortrue(ĥ) ≤ errortrain(ĥ) + ε(H,m, δ)

≤ errortrain(h∗) + ε(H,m, δ)

≤ errortrue(h
∗) + 2ε(H,m, δ)

where h∗ = argminh∈H errortrue(h) is the true risk minimizer.

Given a set of hypothesis classes H1, H2, ...,HK (K possibly infinite) with VC(H1) ≤ VC(H2) ≤
... ≤ VC(HK), structural risk minimization is the following procedure. First for each k = 1, ...,K
we find the empirical risk minimizer ĥk = argminh∈Hk errortrain(h) within Hk. Then we find

k̂ = argmin
k=1,...,K

(
errortrain(ĥk) + ε(Hk,m, δk)

)
,
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(for some δ1, ..., δK), and the structural risk minimizer is ĥ = ĥ
k̂
.

Another possible procedure would be to simply use the empirical risk minimizer in the union of
H1, ...,HK . In the next two problems, we’ll try to see why structural risk minimization might be a
better idea.

(a) [5 points] Let
ĥunion = argmin

h∈
⋃K
k=1Hk

errortrain(h)

and
h∗union = argmin

h∈
⋃K
k=1Hk

errortrue(h).

Show an upper bound on errortrue(ĥunion) in terms of errortrue(h
∗
union) (and some other terms)

that holds with probability ≥ 1 − δ for given δ. How does your bound simplify in the case
that H1 ⊆ H2 ⊆ ... ⊆ HK?

Let Hk be the set of “interval classifiers” (as defined in Problem 2.1(b)) with up to k intervals,
and let K = 100. Give a lower bound on the number of samples m needed that is sufficient
to guarantee that errortrue(ĥunion) − errortrue(h

∗
union) ≤ 0.25 with probability at least 0.95.

Answer: Applying the above bound with H =
⋃K
k=1Hk,

errortrue(ĥunion) ≤ errortrue(h
∗
union) + 2ε

(
K⋃
k=1

Hk,m, δ

)

with probability ≥ 1− δ. If
⋃K
k=1Hk = HK , this simplifies to

errortrue(ĥunion) ≤ errortrue(h
∗
union) + 2ε (HK ,m, δ) .

For the interval classifiers with K = 100 and δ = 0.05, we need m such that

16

√
200

(
ln m

200 + 1
)

+ ln 8
0.05

2m
≤ 0.25.

We can solve this numerically to see that m ≥ 4527173 is sufficient.

(b) [5 points] Give a lower bound on the number of samples m so that the structural risk
minimizer ĥ

k̂
, computed using δ1 = ... = δK = 0.05/100 on the sequence of hypothesis spaces

defined in part (a), satisfies errortrue(ĥk̂) − errortrue(h
∗
union) ≤ 0.25 with probability at least

0.95, assuming that h∗union ∈ H5.

Answer: We have that with probability ≥ 1−
∑K

k=1 δk,

errortrue(ĥk̂) ≤ min
k

{
min
h∈Hk

errortrue(h) + 2ε(Hk,m, δk)

}
≤ min

h∈Hk′
errortrue(h) + 2ε(Hk′ ,m, δk′)
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for any fixed k′. In particular, the inequality holds for k′ = 5. Also, since h∗union ∈ H5,
errortrue(h

∗
union) = minh∈Hk′ errortrue(h), so

errortrue(ĥk̂) ≤ errortrue(h
∗
union) + 2ε(H5,m, δ5)

= errortrue(h
∗
union) + 16

√
10
(
ln m

10 + 1
)

+ ln 8
0.05/100

2m

Solving numerically, we see that m ≥ 247493 suffices, which is an order of magnitude fewer
samples than was required without structural risk minimization in part (a).

3 Boosting [25pt, Derry]

Consider a stepwise algorithm A:

Input parameters: T , H, φ

Initialize the classifier f0(x) = 0

for t = 1 to T do:

1. Compute

(ht, αt) = argminα∈R,h∈H

m∑
i=1

φ(yi, ft−1(xi) + αh(xi))

2. Update the classifier

ft(x) = ft−1(x) + αtht(x)

end for

return the classifier sign(fT (x))

The intuition is that, at each step, the algorithm greedily adds a hypothesis h ∈ H to the current
hypothesis to minimize the φ-risk.

1. [5 pts] What would be the form of φ(y, y′) that will make algorithm A equivalent to Ad-
aBoost?

Answer: Exponential loss, φ(y, y′) = exp(−y′y)

2. [10 pts] Using the risk function you have defined above, prove that AdaBoost is equivalent
to algorithm A.

Hint: Work out the value of ht that will minimize the risk function φ(y, y′) for any fixed
value of α > 0 (further hints: ht is not a function on α). Then, given this ht find the αt
that will minimize the risk function φ(y, y′). Think also how the weights Dt(i) in AdaBoost
is related to algorithm A.

Answer:
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(ht, αt) = argminα∈R,h∈H

m∑
i=1

φ(yi, ft−1(xi) + αh(xi))

= argminα∈R,h∈H

m∑
i=1

exp(−yi(ft−1(xi) + αh(xi)))

= argminα∈R,h∈H

m∑
i=1

exp(−yift−1(xi))exp(−yiαh(xi)))

= argminα∈R,h∈H

m∑
i=1

Dt−1(i)exp(α)1{yi 6= h(xi)}+
m∑
i=1

Dt−1(i)exp(−α){1− 1{yi 6= h(xi)}}

= argminα∈R,h∈H exp(−α)
m∑
i=1

Dt−1(i) + (exp(α)− exp(−α))
m∑
i=1

Dt−1(i)1{yi 6= h(xi)}

where

Dt−1(i) =
exp(−yi(ft−1(xi))∑m
i=1 exp(−yi(ft−1(xi))

h(xi) ∈ {−1,+1}

Hence for any fixed value of α > 0,

ht = argminh∈H (exp(α)− exp(−α))

m∑
i=1

Dt−1(i)1{yi 6= h(xi)}

= argminh∈H

m∑
i=1

Dt−1(i)1{yi 6= h(xi)}

Given ht, to obtain αt,

αt = argminα∈R exp(α)

m∑
i=1

Dt−1(i)1{yi 6= ht(xi)}+ exp(−α)

m∑
i=1

Dt−1(i){1− 1{yi 6= ht(xi)}}

= argminα∈R exp(α)εt + exp(−α)(1− εt)

where

εt =

m∑
i=1

Dt−1(i)1{yi 6= ht(xi)}
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To find the minimum, differentiating the expression exp(α)εt + exp(−α)(1− εt) w.r.t. α and
setting it to zero,

exp(α)εt − exp(−α)(1− εt) = 0

exp (2α) =
1− εt
εt

αt =
1

2
log

1− εt
εt

which is similar to AdaBoost.

3. [10 pts] Now consider a more general algorithm where ht ∈ H from t = 1 to T be any
arbitrary sequence of classifiers. Let {xi, yi}mi=1 be a training set of m observations. Starting
with f0 = 0, ft is recursively defined as ft =

∑t
i=1 αihi and αt = β log 1−εt

εt
where

εt =

m∑
i=1

Dt−1(i)1{yi 6= ht(xi)}

which is the weighted training error of the classifier ht. Prove that for all T :

m∑
i=1

1

m
exp (− 1

β
yifT (xi)) = 1

which implies that any sequence of classifiers can be combined linearly to form a good com-
bination while maintaining a constant exponential loss on the data.

Answer:

Define:

D0(i) =
1

m

D1(i) =
1
m e
−α1

1
β
yih1(xi)

Z1

D2(i) =
1
m e
−α1

1
β
yih1(xi) e

−α2
1
β
yih2(xi)

Z1Z2
...

DT (i) =
1
m e
− 1
β
yi

∑T
t=1 αtht(xi)∏T

t=1 Zt

where,

Zt =

m∑
i=1

Dt−1(i)e
−αt 1β yiht(xi)
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Since
∑m

i=1DT (i) = 1,

m∑
i=1

1

m
e
− 1
β
yi

∑T
t=1 αtht(xi) =

T∏
t=1

Zt

Now,

Zt =

m∑
i=1

Dt−1(i)e
−αt 1β yiht(xi)

=

m∑
i=1

Dt−1(i)e
αt

1
β 1{yi 6= ht(xi)}+

m∑
i=1

Dt−1(i)e
−αt 1β {1− 1{yi 6= ht(xi)}}

= e
αt

1
β

m∑
i=1

Dt−1(i)1{yi 6= ht(xi)}+ e
−αt 1β

m∑
i=1

Dt−1(i){1− 1{yi 6= ht(xi)}}

=
1− εt
εt

m∑
i=1

Dt−1(i)1{yi 6= ht(xi)}+
εt

1− εt

m∑
i=1

Dt−1(i){1− 1{yi 6= ht(xi)}} (since αt = β log
1− εt
εt

)

=
1− εt
εt

εt +
εt

1− εt
(1− εt) (since εt =

m∑
i=1

Dt−1(i)1{yi 6= ht(xi)} and

m∑
i=1

Dt−1(i) = 1)

= 1− εt + εt

= 1

Hence,

m∑
i=1

1

m
exp (− 1

β
yifT (xi)) =

T∏
t=1

Zt =
T∏
t=1

1 = 1

4 PCA [Avi 25 pts]

In this question we will try to understand PCA by showing two cool ways of interpreting the first
principal component. One is the direction of maximum variance after projection and the second is
the direction that minimizes reconstruction error. Note that the first principal component is the
first eigenvector of the sample covariance matrix.

Consider n points X1, ..., Xn in p-dimensional space, and let X be the n × p matrix representing
these points. Assume that the data points are centered, ie, ~1>X = ~0. Consider a unit vector v ∈ Rp
and project all the points onto this vector (hence every point becomes a one-dimensional point on
the direction of unit vector v).

1 [1 pt] Argue that the projection is given by Xv.
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Soln:- Let us decompose the vector representing Xi into two orthogonal vectors Xiv and Xiv′

where Xiv is parallel to v. Using notation that X = [XT
1 , X

T
2 , . . . , X

T
n ] = [XT

i ] we get

Xv = [(Xiv +Xiv′)]v = [XT
iv]v + [XT

iv′ ]v = [XT
iv]v = Xvv

Given that v is a unit vector, Xvv given the component of X in direction v. Since Xv = Xvv,
Xv represents projection of X onto v.

2 [2 pt] What is the sample mean of all the points after the projection?

Soln:- Sample mean after projection is given by

1

n
[
−→
1 T (Xv)] =

1

n
[(
−→
1 TX)v] =

1

n
[
−→
0 ] = 0

3 [2 pt] What is the sample variance of all the points after the projection?

Soln:- Given that the sample mean is zero we can write the variance as

1

n
[(Xv)T (Xv)] =

1

n
[vTXTXv] = vT

[
XTX

n

]
v = vTΣv

where Σ = XTX is the sample variance of original p-dimensional points (X).

4 [2 pt] Setup the problem of maximizing the sample variance of the projection onto v subject
to a constraint on the L2-norm of v.

Soln:-

max
v
vTΣv

st.‖v‖2 = 1 (1)

5 [4 pt] Solve the minimization problem to show that the solution is the first PC. (Hint: take the
Lagrangian of the above problem, differentiate and substitute to zero, to get to the optimum
solution)

Soln:- By stationarity, at optimality we have

2Σv∗ + λ∗v∗ = 0

Thus the optimal value is v∗TΣv∗ = λ and so the vector that maximizes variance after projection,
is the eigenvector associated with the largest eigenvalue λ of the covariance matrix Σ.

So we have now proved that the direction of maximum covariance is the first PC. Now we show
that the direction that minimizes reconstruction error is also the first PC.

6 [1 pt] Argue that the reconstruction of Xi using v is (X>i v)v.

Soln:- The reconstruction error of Xi using v can be written as the following optimization
problem (with α being scalar): minα ‖Xi − αv‖2. Taking derivative wrt α and setting it to
zero gives us the following:

2(Xi − αv)T v = 0⇔ XT
i v = αvT v ⇔ α = XT

i v

Since v is a unit vector vT v = 1. So, αv = (XT
i v)v is the reconstruction of Xi using v.
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7 [2 pt] You projected Xi to X>i v and then reconstructed it using (X>i v)v. What is the
reconstruction error of Xi, when measured in L2-norm?

Soln:-
‖(XT

i v)v −Xi‖2

8 [2 pt] What is the total squared reconstruction error over all points? Soln:-

‖(XT v)v −X‖2F

9 [2 pt] Show that minimizing total squared reconstruction error is equivalent to minimizing
−‖Xv‖22.

Soln:-

‖(XT v)v −X‖2F = tr(((XT v)v −X)T ((XT v)v −X))

= tr(vvTXTXvvT )− 2tr(vvTXTX) + tr(XTX)

= tr(vTXTXvvT v)− 2tr(vTXTXv) + tr(XTX)

= tr(vTXTXv)− 2tr(vTXTXv) + tr(XTX)

= −tr(vTXTXv) + tr(XTX)

= −‖Xv‖22 + ‖X‖22

since the minimization is wrt to v, ‖X‖22 is constant.

10 [4 pt] Solve the minimization problem to show that the solution is the first PC. (Hint: take the
Lagrangian of the above problem, differentiate and substitute to zero, to get to the optimum
solution)

Soln:- The optimization problem is the same as in part 5.

4.1 [3 pts] SVD and PCA

Let us define a new variable Y as

Y = XT (2)

where X is a n × p matrix containing the data points as defined before. If the SVD of Y is given
by Y = UΣV T then show that the columns of V are the PCA of X.

Soln:

XXT = Y TY = V ΣUUTΣV T = V Σ2V T (3)

Thus (XXT )Vi = Σ2
iiVi which implies that the columns of V are the PCA of X.

10


