Machine Learning

10-701/15-781, Fall 2012

Graphical Models
and
Exact Inference

Reading: Chap. 8, C.B book
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Recall HMM
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What Is a Bayesian Network? T
--- example from a signal transduction pathway o
e A possible world for cellular signal transduction:
[ReceptorA ] X, [ReceptorB ] X,
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ]Xs
[ TFF } X,
[ Gene G ] X; [ Gene H ] Xs
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Recap of Basic Prob. Concepts o°

e Representation: what is the joint probability dist. on multiple
variables?

P(X{ X5, X3, X4, X5, X, X5, Xg,)

e How many state configurations in total? --- 28
e Arethey all needed to be represented?

3

e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?

e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H|A) would require summing over all 26 configurations of the
unobserved variables
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000
BN: Structure Simplifies 3
Representation oo
e Dependencies among variables
| [ReceptorA ] X, [ReceptorB ] X, i
S l _____________________________________________________________________ M _e_”JP!?E‘?_i
[ Kinase C ] X; [ Kinase D ] X, [ Kinase E x5

1
Nucleus i
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Bayesian Network 4+

a If Xi's are conditionally independent (as described by a BN), the
joint can be factored to a product of simpler terms, e.g.,

P(Xy, Xy, X3, Xy, X, Xg, X7, Xg)

= P(Xy) P(X;) P(X5| Xy) P(Xy] X,) P(Xq| Xy)
P(Xel X3, Xg) P(X7] Xg) P(Xg| Xs, Xo)

a Why we may favor a BN?
» Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28

= Algorithms for systematic and efficient inference/learning computation
* Exploring the graph structure and probabilistic semantics

= Incorporation of domain knowledge and causal (logical) structures
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Bayesian Network: Factorization Theorem | ¢

P(Xy, Xp Xgo X4 X, Xg, Xg, Xe)

= P(Xy) P(X;) P(X3| Xp) P(X,] X;) P(Xg| X))
P(Xel X3, Xg) P(X7] Xg) P(Xg| Xs, Xo)

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

P(X)=TTP(XIX,)

where X_is the set of parents of xi. d is the number of nodes
(variables) in the graph.
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Example: a pedigree of people os

e Genetic Pedigree

[
/ ;“ Harry @,,

|Hnmar
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Specification of a BN

e There are two components to any GM:

e the qualitative specification
e the quantitative specification
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Qualitative Specification

e Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)
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Local Structures & i
Independencies :

e Common parent CB8 D
e Fixing B decouples A and C

"given the level of gene B, the levels of A and C are independent” @ O

e (Cascade

e Knowing B decouples A and C CA_> CB_ > CC O

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC D

"If A correlates to C, then chance for B to also correlate to B will decrease"

e The language is compact, the concepts are rich!
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A simple justification
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Graph separation criterion .o

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally

independent) given z if they are separated in the moralized
ancestral graph

e Example:

X
X x{ y—
. Y
— z y = z Y

original graph ancestral moral ancestral
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Local Markov properties of DAGs | ¢

Structure: DAG Ancestor

« Meaning: a node is - -
conditionally independent
of every other node in the 0*@ M

network outside its Markov
blanket

* Local conditional %ﬂ‘

distributions (CPD) and the
DAG completely determine -

the joint dist. m \‘

- Children's co-parent ]

« Give causality
relationships, and facilitate
a generative process

Descendent
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Global Markov properties of
DAGs

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary

conditions):
O—@—0 O—0O—C |
= « Defn: I{6)=all independence
@ o properties that correspond to d-
separation:

N S

C

; : X z 1(G) = {X Lz)y :dsepG(X;Z\Y)}

X o Z X # Z
v/j /5 e D-separation is sound and
"‘” Wy complete
(a) (b)
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X e Complete the I(G) of this
4 graph:

X2

Essentially: A BN is a database of Pr. Independence statements among variables.
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Towards quantitative specification of | sese
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e Forthe graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.
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Conditional probability tables
(CPTs)

a® |0.75

al [0.25

bO

0.33

b1

0.67

P(@)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a%h0 aob’ a'bo a'b’
c? 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
d® (0.3 |05
d’ 07 |0.5
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o o ] 000
Conditional probability density eecs
func. (CPDs) :.
P(a,b,c.d) =
A~N(y, £) B~N(u,, ) P(a)P(b)P(c|a,b)P(d|c)
‘ 'n“w's'\"s
~~~~~~~~ e
i ‘\* W s‘“%::‘w‘s‘s\‘& t‘:&
C~N(A+B,zc) S ',I"[f'l‘““ Q&Wx “ ~~~~~

|
® owes
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Conditional Independencies

Label

Features

What is this model

1. When Y is observed?
2. When Y is unobserved?
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Conditionally Independent T
Observations oo

Model parameters

@ @___ ° Data = {yq,..-Y,}
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“Plate” Notation oo

‘ Model parameters
@ Data = {X,...X,}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
In a conditionally independent manner

© Eric Xing @ CMU, 2006-2012
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0000
o000
Example: Gaussian Model oo
‘ ’ Generative model:
\

P(Xy,... Xy | 1, ©) =P pXi|n o)
= p(data | parameters)
= p(D |6

1I=1:n where 0 = {u, o}
= Likelihood = p(data | parameters)
=p(D[96)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (0)

© Eric Xing @ CMU, 2006-2012 24



Bayesian models

&

=1:n




More examples

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach
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Example, con'd 4+

e Evolution

ancestor

T years

Tree Model
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Example, con'd 4+

e Speech recognition

Loocepe: a x1osle word

HHHH

Hidden Markov Model
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An

(incomplete)

genealogy
of BNs

SBEM,
Boltzrmann
hMachines

7
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y
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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, X,, X3, Xy, Xe, Xg, X7, Xg)

= P(Xy) P(X3) P(X5| Xy) P(X4] X5) P(Xs| Xy)
P(Xgl X3, X4) P(X7] Xg) P(Xg| X5, Xo)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
P(Xy, X0 Xy Xay Xer X3 X Xg)
: (wiasen Jx,  [xinas
= UZ exp{E(X)+EX)+E (X5, X;)+E(Xy, X)+E(Xs, X)) ]
+ E(Xe X3, Xp)+E(X7, Xe)TE(Xg, X5, Xe)} .
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Modeling Go

This is the middle position of a Go game.
Overlaid is the astimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.

© Eric Xing @ CMU, 2006-2012
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An Ising Model -

0000
00000
00000  wo-tes[Toxx-Tax]
00009
00000

e Naturally arises in image processing, lattice physics, etc.

e Each node may represent a single "pixel", or an atom

e The states of adjacent or nearby nodes are "coupled" due to pattern continuity or
electro-magnetic force, etc.

e Most likely joint-configurations usually correspond to a "low-energy" state
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Summary

e Represent dependency structure with a directed acyclic graph

e Node <-> random variable

e Edges encode dependencies Cf
Absence of edge -> conditional independence

e Plate representation O
e A GM is a database of prob. Independence statement on variables Cg

e The factorization theorem of the joint probability
e Local specification - globally consistent distribution
e Local representation for exponentially complex state-space

e Itis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at the
same time endow the distributions with structured semantics

e Support efficient inference and learning
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Inference and Learning

e \We now have compact representations of probability
distributions: BN

e A BN M describes a unique probability distribution P

e Typical tasks:

e Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?

I.  We use learning as a name for the process of obtaining point estimate of M.
ii. But for Bayesian, they seek p(M|D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.

© Eric Xing @ CMU, 2006-2012
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Inferential Query 1: eecs
Likelihood oo

e Most of the queries one may ask involve evidence

e Evidence X, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X, X,, ..., X;}

e Without loss of generality X,={X,.q, .. , X, },
o Write X,=X\X, as the set of hidden variables, X,,can be & or X

e Simplest query: compute probability of evidence

P(X,) =D P(Xp X,) = 2oee 2P (Xprees XXy

e this is often referred to as computing the likelihood of X,
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Inferential Query 2: eecs
Conditional Probability oo

e Often we are interested in the conditional probability
distribution of a variable given the evidence

_ _ P(Xy, Xy ) _ P(Xy1, Xy)
P(Xy [ Xy =Xy) = P(xy) Y P(X, =Xy Xy)

e this is the a posteriori belief in X,,, given evidence X,

e \We usually query a subset Y of all hidden variables X, ,={Y,Z}
and "don't care" about the remaining, Z:

P(Y %) =2 P(Y,Z=2]|x,)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y|x,) is called a marginal prob.
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Applications of a posteriori Belief |

e Prediction: what is the probability of an outcome given the starting
condition ?

e the query node is a descendent of the evidence
e Diagnosis: what is the probability of disease/fault given symptoms
?
C A O O>—>»C >
e the query node an ancestor of the evidence
e Learning under partial observation

e fill in the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network

© Eric Xing @ CMU, 2006-2012
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Inferential Query 3: eecs
Most Probable Assignment oo

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e 3Such reasoning is usually performed under some given
evidence X, and ignoring (the values of) other variables Z:

Y |x, =argmax, P(Y|x,)=argmax, > P(Y,Z=z|x,)

e thisis the maximum a posteriori configuration of Y.
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Complexity of Inference ;

Thm:
Computing P(X,=x4| x,) In an arbitrary GM is NP-hard

e Hardness does not mean we cannot solve inference

e Itimplies that we cannot find a general procedure that works
efficiently for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures
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Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Belief propagation
e The junction tree algorithms  (but will not cover in detail here)

e Approximate inference techniques

e Variational algorithms
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods

© Eric Xing @ CMU, 2006-2012
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Marginalization and Elimination 3
o A food web: (8) (A4
(©
& B
(& &

What is the probability that hawks are leaving given that the grass condition is poor?

Query: Ah) P =>>>>>3%P(ab,c,d,ef,g,h)

e By chain decomposition, we get
=33 333> > P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
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Variable Elimination

e Query: P(A|h) (B

e Need to eliminate: B,CD.EF.6H

e Initial factors: O Q

P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f) G o
e Choose an elimination order: H6 F,ED,C.B e @
o Step 1:

e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., h)):

m,(e, f)=p(h=h]e, f)

e This step is isomorphic to a marginalization step: (TS

m,(e f)=>" p(hle f)s(h=h) &

© Eric Xing @ CMU, 2006-2012
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| X XX
Example: Variable Elimination -
e Query: A(B|h)
e Need to eliminate: BCD.EF.& o
e |nitial factors: Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f) o
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
(H)
e Step 2: Eliminate &
e compute
m,(e)=> p(gle)=1
g B W
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e)m, (e, T) L)
(E) F

=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f)

© Eric Xing @ CMU, 2006-2012
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X X X
. o . 0o
Example: Variable Elimination -
e Query: A(B|h)
e Need to eliminate: B,CD,E F 0 o
e Initial factors: e Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, ) G o
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, )
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) & D
e Step 3: Eliminate F
e compute
m, (e,a) :Z p(f [a)m, (e, T)
f (8) A
) Q)

= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m,(a,e)
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Example: Variable Elimination -
e Query: A(B|h)
e Need to eliminate: B D,E 0 o
e Initial factors: e Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f) G o
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) &
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m,(a,e)
e Step 4: Eliminate £
T mac,d)= plelc,d)m, (a,e)
e (8) A

= P(a)P(b)P(c|b)P(d|a)m,(a,c,d) G,
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Example: Variable Elimination -
e Query: A(B|h)
e Need to eliminate: 8,C.D 0 o
e Initial factors: e Q
P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, T)
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, T) G o
= P(@)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, T) e @

= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|b)P(d |a)m, (a,c,d)

e Step 5: Eliminate D ® @D
« compute m,(a,c)=> p(d|a)m,(a,c,d)
d

= P(a)P(b)P(c|d)m,(a,c)
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o000
Example: Variable Elimination .
e Query: A(B|h)
e Need to eliminate: B,C 0 o
e Initial factors: e Q
P(@)P()P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f) G o
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, f)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) (H)
= P(@)P(b)P(c|d)P(d|a)P(e|c,d)m; (a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(@)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate £ D)

e compute m. (a, b) = Z p(C | b)md (a, C)

= P(a)P(b)P(c|d)m,(a,c)
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M M n M ...
Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: 2 0 o
e Initial factors: e Q
P(@P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, )
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g]|e)m,(e, f) G o
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, T) e @
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m.(a,b)
e Step 7: Eliminate B @

e compute m, (a) = z p(b) m, (a, b)

= P(a)m,(a)
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Example: Variable Elimination -
e Query: A(B|h)
e Need to eliminate: B 0 o
e Initial factors: e Q
P(@)P((b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, )
= P(@)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, f) G o
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f [a)m, (e, T) (&) (H)

= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d |a)m.(a,c,d)

= P(@)P(b)P(c|d)m,(a,c)

= P(a)P(b)m.(a,b)

= P(a)m,(a)

e Step8 Wrap-up  p(a,h)=p@m,(a), p(h)=Y p(@m,(a)

- p@m(a)
=Pl =5+ am @

© Eric Xing @ CMU, 2006-2012
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Complexity of variable
elimination

e Suppose in one elimination step we compute
My (Yyoeeon Vi) = DM (X, Yireens Vi)
X k
m', (X, Yo,eees Vi) = H mi(X’YCi)
i=1

This requires
o ke|Val(X)[e]|Val(Y,) multiplications

— For each value of x, y,, ..., y,, we do Amultiplications

o [Val(X)[e[]|Val(¥.)| additions
— For each value of y,, ..., y,, we do /Va/(X)/ additions

Complexity is exponential in number of variables in the
intermediate factor

© Eric Xing @ CMU, 2006-2012
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Elimination Clique

e |nduced dependency during marginalization is captured in
elimination cliques

e Summation <-> elimination
e Intermediate term <-> elimination clique

P(a)P(b)P(c|b)P(d|a
a)P(b)P(c|b)P(d|
a)P(b)P(c|b)P(d|a
a)P(b)P(c|b)P(d|a
(b)P(clb)P(d|a
(0)P(c|b)
(b)¢

) (ele, d)P(fla)P(gle)P(hle, f)
)

)

)

)P (b)P(c|b)P(d

)

)

)¢

)P
a)P(ele,d)P(fla)P(gle)on(e, f)
)P(elc, d)P(f‘a)Qq e)on(e, f)
)P
)

e R

(ele,d)py(a,e)
d

9/0

e(a, e,

g
)

bala,

anPc]b
b

a)op(a)

i)
i)

a he(a,b)

(
(
(
(
(
(
(
(

R I 2
e,

é(a)
e Can this lead to an generic
inference algorithm?
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From Elimination to Message
Passing -

e Elimination = message passing on a clique tree

m.(a,c,d)

= Z p(e | C, d)mg (e)mf (ale)

e Messages can be reused
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From Elimination to Message
Passing -

e Elimination = message passing on a clique tree

e Another query ...

e Messages m.and m, are reused, others need to be recomputed
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From elimination to message
passing

e Recall ELIMINATION algorithm:

Choose an ordering £ in which query node f is the final node

Place all potentials on an active list

Eliminate node i by removing all potentials containing i, take sum/product over x;.
Place the resultant factor back on the list

e Fora TREE graph:

Choose query node f as the root of the tree

View tree as a directed tree with edges pointing towards from f

Elimination ordering based on depth-first traversal

Elimination of each node can be considered as

message-passing (or Belief Propagation) directly

along tree branches, rather than on some transformed graphs

thus, we can use the tree itself as a data-structure to do general inference!!
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Message passing for trees %

Let m;(X;) denote the factor resulting
from eliminating variables from bellow
up to i, which is a function of x;:

ﬂ me(xZ) mji(Ti) = Z(‘L»‘(%)U(%-é‘?.j) 11 ”M-.;(i‘f;:))

T EEN(j)\i

This is reminiscent of a message sent
from jto i.

ﬂmﬂ(%) = Z w(z)) (i, ) H mi; (%)

g kEN (4)\

plzg) cv(ae) ] mer(y)

eeN(f)
m;;(X;) represents a "belief" of x; from x;!
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e Elimination on trees is equivalent to message passing along
tree branches!

ﬂmjz(xz) = Z(W%W(l’i,fﬂj) H mkj(ﬂfj))
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The message passing protocol:

e A two-pass algorithm:
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Belief Propagation (SP-algorithm): | 8322
Sequential iImplementation o°

SuMm-PropucT(T, £)
EVIDENCE(FE)
f = CHooseRooT(V)
for e € N(f) “\
CoLLECT(f,€)
for e € N(f)
DISTRIBUTE(f, €)

fori eV
COMPUTEMARGINAL(4%) i
EVIDENCE(‘E) SENDMESSAGE T
fori e K
Y (2;) = P(z:)0(zi, Z:)
for i (;é E
/ { } '!/’(T ) CloLL cr/ \C‘uLLr-_LT
CoLLECT(7. j)
for k € N(j)\i k
COLLECT(j, k)
SENDMESSAGE(J, 1) 1

DISTRIBUTE(%, )
SENDMESSAGE(1, 7)
for k € N(j)\i
DISTRIBUTE(], k)

SENDMESSAGE(7,1)

mj,-_(.-n;_)=Z(z/;“3(:1:j)1f;(:1:g,:;-:j) H my;(zj))

Tj keN(7)\i DISTRIBUTE ’/ \ DISTRIBUTE

ComMmpu TEMARGINAL

;D 0( l/) H ??ij? 2 k
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Inference on general GM 4

e Now, what if the GM is not a tree-like graph?

e Can we still directly run message
message-passing protocol along its edges?

e For non-trees, we do not have the guarantee that message-passing
will be consistent!

e Then what?

e Construct a graph data-structure from P that has a tree structure, and run message-passing
on it!

—> Junction tree algorithm
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A Sketch of the Junction Tree 444
Algorithm | o

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...
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The Shafer Shenoy Algorithm

e Shafer-Shenoy algorithm

e Message from clique /to clique 4 :

Hij = Z WCiH:uk—)i (Si)

: . C;i\S;i k]
e Clique marginal P .

p(C;) cw Hﬂk—)i (Si)
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000
0000
0000
o000
. . . .
The Junction tree algorithm for HMM °
e A junction tree for the HMM
v (1, X1) v (Y1, Y2) v (Y2, ¥s) v (Yra Vr)
D Dpa D e @ a
Q @ @ @ clyr)
. Rightward paSS ‘//()’vaz) '//(}’31)(3) l//(yT’XT)
zut—>t+1(yt+1) ZW(yt’ yt+1)1ut 1t (yt)/’ltT (yt+1) e (V) v (¥ Vi) Ly srid (V1)
e N L
= Z p(Yt+1 | Yt):ut 1—>t(yt) p(xt+1 | yt+1)
Vi ﬂfT(Yf+1)
= p(xt+1 | yt+1)zayt,ym/ut—1—>t(yt)
This is exactly the forward algorithm! W (Vr1r Xa1)
¢ Leftward paSS e Hr 1 (V3) v (Vi Vra) Hyri1 (Vi)
O—C O—10
Hi 1t (yt) - ZW(ytf yt+1)1ut<—t+1 (yt+1)/utT (yt+1)
Y1 Hyip ()’ f+1)
= ZP(Yf+1 | Yt ra (Vei) P(Koit | Y1)
This i)s/”éxactly the backward algorithm! V(Y Xo)
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Summary 4

e The simple Eliminate algorithm captures the key algorithmic
Operation underlying probabilistic inference:

--- That of taking a sum over product of potential functions

e The computational complexity of the Eliminate algorithm can be
reduced to purely graph-theoretic considerations.

e This graph interpretation will also provide hints about how to design
improved inference algorithms

e What can we say about the overall computational complexity of the
algorithm? In particular, how can we control the "size" of the
summands that appear in the sequence of summation operation.
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