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Recall HMMRecall HMM
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What is a Bayesian Network?
l f i l t d ti th--- example from a signal transduction pathway

A possible world for cellular signal transduction: 
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Recap of Basic Prob Concepts
Representation: what is the joint probability dist. on multiple 

Recap of Basic Prob. Concepts
p j p y p

variables?

H t t fi ti i t t l? 28

),,,,,,,,(  87654321 XXXXXXXXP
A BA BA BA B

How many state configurations in total? --- 28

Are they all needed to be represented?
Do we get any scientific/medical insight?
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Learning: where do we get all this probabilities? 
Maximal-likelihood estimation? but how many data do we need?
Where do we put domain knowledge in terms of plausible relationships between 
variables, and plausible values of the probabilities?variables, and plausible values of the probabilities?

Inference: If not all variables are observable, how to compute the 
conditional distribution of latent variables given evidence?g

Computing p(H|A) would require summing over all 26 configurations of the 
unobserved variables
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What is a Bayesian Network?
l f i l t d ti th--- example from a signal transduction pathway

A possible world for cellular signal transduction: 

Receptor A Receptor BX1 X2

p g
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BN: Structure Simplifies 
RepresentationRepresentation

Dependencies among variables

Receptor A Receptor BX1 X2

p g

Ki C Ki EKi D
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Bayesian Network
If Xi's are conditionally independent (as described by a BN), the 
j i t b f t d t d t f i l t

Bayesian Network

joint can be factored to a product of simpler terms, e.g., 

P(X1, X2, X3, X4, X5, X6, X7, X8)
Receptor A Receptor BX1 X2Receptor A Receptor BX1 X2X1 X2

( 1 2 3 4 5 6 7 8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

X3 X4 X5

X6

X7 X8

Why we may favor a BN?
Representation cost: how many probability statements are needed? 

Gene H7 X8Gene H7 X87 X8

Algorithms for systematic and efficient inference/learning computation
• Exploring the graph structure and probabilistic semantics

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28! 

Incorporation of domain knowledge and causal (logical) structures
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Bayesian Network: Factorization TheoremBayesian Network: Factorization Theorem

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)
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X

Th
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Theorem: 
Given a DAG, The most general form of the probability distribution 
that is consistent with the (probabilistic independence properties (
encoded in the) graph factors according to “node given its parents”:

∏=
i

i i
XPP )|()( πXX

where      is the set of parents of xi. d is the number of nodes 
(variables) in the graph.

iπX

8© Eric Xing @ CMU, 2006-2012



Example: a pedigree of peopleExample: a pedigree of people
Genetic Pedigree
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Specification of a BNSpecification of a BN
There are two components to any GM:p y

the qualitative specification
the quantitative specification
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Qualitative SpecificationQualitative Specification
Where does the qualitative specification come from?q p

Prior knowledge of causal relationships
Prior knowledge of modular relationships
Assessment from experts
Learning from data
We simply link a certain architecture (e.g. a layered graph) 
…
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Local Structures & 
Independencies

B

Independencies
Common parent

A C

p
Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

A CB
Cascade

Knowing B decouples A and C
"given the level of gene B, the level gene A provides no 

t di ti l f th l l f C"

A B

extra prediction value for the level of gene C"

V-structure
Knowing C couples A and B

C
Knowing C couples A and B
because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!
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A simple justificationA simple justification
B

A C
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Graph separation criterionGraph separation criterion
D-separation criterion for Bayesian networks (D for Directed p y (
edges):

D fi iti i bl d D t d ( diti llDefinition: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

Example:
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Local Markov properties of DAGs

Structure: DAG Ancestor

Local Markov properties of DAGs

• Meaning: a node is 
conditionally independent

Ancestor

Parentof every other node in the 
network outside its Markov 
blanket

Y1 Y2

Parent

• Local conditional 
distributions (CPD) and the 
DAG completely determine

X

DAG completely determine 
the joint dist. 

• Give causality Children's co-parentChildren's co-parent

Child

Give causality
relationships, and facilitate 
a generative process

Descendent
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Global Markov properties of 
DAGsDAGs

X is d-separated (directed-separated) from Z given Y if we can't 
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)=all independence 
properties that correspond to d-p p p
separation:

{ }

• D-separation is sound and 

{ });(dsep:)(I YZXYZXG G⊥=

p
complete
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Example:Example: 
Complete the I(G) of this x4 graph:

x1

x4

x1

x3

x2

x3

2

Essentially: A BN is a database of Pr. Independence statements among variables.
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Towards quantitative specification of 
probability distributionprobability distribution

Separation properties in the graph imply independence p p p g p p y p
properties about the associated variables
For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for theproperties we can derive from the graph should hold for the 
probability distribution that the graph represents

The Equivalence Theorem
For a graph G,
L t D d t th f il f ll di t ib ti th t ti f I(G)Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to G,
Then D1≡D2.1 2
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Conditional probability tables 
(CPTs)

a0 0 75 b0 0 33 P( b d)

(CPTs)

a0 0.75
a1 0.25

b0 0.33
b1 0.67

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

a0b0 a0b1 a1b0 a1b1

A B
a b a b a b a b

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3C

D
c0 c1

d0 0 3 0 5D d 0.3 0.5
d1 07 0.5
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Conditional probability density 
func (CPDs)

P( b d)

func. (CPDs)

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)A~N(µa, Σa) B~N(µb, Σb)

A B

C C~N(A+B, Σc)  C
)

D D~N(µ +C Σ ) C

P(
D|

 

D D~N(µa+C, Σa)
D

C
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Conditional IndependenciesConditional Independencies

Y Label

X1 FeaturesX2 Xn-1 Xn

What is this model

1. When Y is observed?
2. When Y is unobserved?
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Conditionally Independent 
ObservationsObservations

θ Model parameters

Data = {y1,…yn}X1 X2 Xn-1 Xn
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“Plate” NotationPlate  Notation

θ Model parameters

Xi
Data = {x1,…xn}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Example: Gaussian ModelExample: Gaussian Model

µ G ti d lσµ Generative model:   

p(x1,…xn | µ, σ) = P p(xi | µ, σ)

σ

xi

i=1:n

=   p(data | parameters)
=   p(D  | θ)     

h θ { }i=1:n where θ = {µ, σ}

Likelihood = p(data | parameters) 
= p( D | θ )= p( D | θ ) 
= L (θ) 

Likelihood tells us how likely the observed data are conditioned 
on a particular setting of the parameters

Often easier to work with log L (θ) 
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Bayesian modelsBayesian models

θ

xi

i=1:n

25© Eric Xing @ CMU, 2006-2012



More examplesMore examples

Density estimation
Parametric and nonparametric methods

m,s

X

Regression

Parametric and nonparametric  methods

X Y

X X

Classification

Linear, conditional mixture, nonparametric

Q Q

X Y

Classification
Generative and discriminative approach X X
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Example con'dExample, con d
Evolution

ancestor

Qh Qm
T years

?

A C

Qh m

AGAGAC
A C

Tree Model
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Example con'dExample, con d
Speech recognitionp g

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

A AA AX2 X3X1 XT... 

Hidd M k M d lHidden Markov Model
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AnAn 
(incomplete) 

lgenealogy 
of BNs

(Picture by 
Zoubin 
Ghahramani and 
Sam Roweis)
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Two types of GMs

Directed edges give causality relationships (Bayesian 

Two types of GMs

g g y p ( y
Network or Directed Graphical Model):

Receptor A Receptor BX1 X2Receptor A Receptor BX1 X2X1 X2

P(X1, X2, X3, X4, X5, X6, X7, X8)
Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

Kinase C

TF F

Gene G Gene H

Kinase EKinase DX3 X4 X5

X6

X7 X8

X3 X4 X5

X6

X7 X8

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):model):

Receptor A

Kinase C

TF F

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

Receptor A

Kinase C

TF F

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X1 X2

X3 X4 X5

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2) TF F

Gene G Gene H

X6

X7 X8

TF F

Gene G Gene H

X6

X7 X8

X6

X7 X8

p{ ( 1) ( 2) ( 3 1) ( 4 2) ( 5 2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Modeling GoModeling Go

© Eric Xing @ CMU, 2006-2012
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An Ising ModelAn Ising Model

⎫⎧

⎭
⎬
⎫

⎩
⎨
⎧

+= ∑∑
< i

ii
ji

jiij XXX
Z

Xp 0exp1)( θθ

Naturally arises in image processing, lattice physics, etc.
Each node may represent a single "pixel", or an atom

The states of adjacent or nearby nodes are "coupled" due to pattern continuity or

© Eric Xing @ CMU, 2006-2012

The states of adjacent or nearby nodes are coupled  due to pattern continuity or 
electro-magnetic force, etc.
Most likely joint-configurations usually correspond to a  "low-energy" state  
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SummarySummary
Represent dependency structure with a directed acyclic graph

Node <-> random variable
Edges encode dependencies

Absence of edge -> conditional independence
Plate representationPlate representation
A GM is a database of prob. Independence statement on variables 

Th f i i h f h j i b biliThe factorization theorem of the joint probability
Local specification globally consistent distribution
Local representation for exponentially complex state-space
It i t t it / if / /d i ti ll lIt is a smart way to write/specify/compose/design exponentially-large 
probability distributions without paying an exponential cost, and at the 
same time endow the distributions with structured semantics

Support efficient inference and learning
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Inference and LearningInference and Learning
We now have compact representations of probability 
distributions:  BN

A BN M describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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Inferential Query 1: 
LikelihoodLikelihood

Most of the queries one may ask involve evidenceq y

Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

Without loss of generality Xv={Xk+1, … , Xn}, 

Write XH=X\Xv as the set of hidden variables, XH can be ∅ or X

Simplest query: compute probability of evidence

∑ ∑ )(),,()(
1

1
x x

k
k

,,x,xPPP v
x

vHv xXXx
H

KK== ∑

this is often referred to as computing the likelihood of  xv
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Inferential Query 2: 
Conditional Probability

Often we are interested in the conditional probability 

Conditional Probability

p y
distribution of a variable given the evidence

VHVH xXxXxXX ),(),()|( PPP

this is the a posteriori belief in XH, given evidence xv

∑ =
===

Hx
VHH

VH

V

VH
VVH xxXx

xXX
),()(

)|(
PP

P

this is the a posteriori belief in XH, given evidence xv

We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining Z:and don t care  about the remaining, Z:

∑ ==
z

VV xzZYxY )|,()|( PP

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.
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Applications of a posteriori Belief
Prediction: what is the probability of an outcome given the starting 

?

Applications of a posteriori Belief

condition

the query node is a descendent of the evidence

A CB
?

q y

Diagnosis: what is the probability of disease/fault given symptoms

A CB
?

the query node an ancestor of the evidence

Learning under partial observation

A CB

g p
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not y
restricted by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network
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Inferential Query 3: 
Most Probable Assignment

In this query we want to find the most probable joint 

Most Probable Assignment

assignment (MPA) for some variables of interest

Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:

∑ ===
z

VyVyV xzZYxYxY )|,(maxarg)|(maxarg|* PP

this is the maximum a posteriori configuration of Y.
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Complexity of Inference

Thm:

Complexity of Inference

Thm:
Computing P(XH=xH| xv) in an arbitrary GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that works 
efficiently for arbitrary GMsy y
For particular families of GMs, we can have provably efficient 
procedures
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Approaches to inferenceApproaches to inference

Exact inference algorithmsg

The elimination algorithm
Belief propagationp p g
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniquesApproximate inference techniques

Variational algorithmsVariational algorithms 
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
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Marginalization and Elimination
A food web:

Marginalization and Elimination

B A

DC

E F

G H

Query: P(h) ∑∑∑∑∑∑∑=
f d b

hgfedcbaPhP ),,,,,,,()(

What is the probability that hawks are leaving given that the grass condition is poor?

By chain decomposition we get

g f e d c b a

a naïve summation needs to 
enumerate over an exponential 
number of  terms

By chain decomposition, we get
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Variable Elimination
Query: P(A |h) B A

Variable Elimination

Need to eliminate: B,C,D,E,F,G,H

Initial factors:

B A

DC

Choose an elimination order: H,G,F,E,D,C,B

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

Step 1: 
Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):h~

This step is isomorphic to a marginalization step:

),|~(),( fehhpfemh ==
B A

DC

∑ ==
h

h hhfehpfem )~(),|(),( δ E F

G
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D,E,F,G

Initial factors:

B A

DC

E F

G H
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h⇒

Step 2: Eliminate G
tcompute

1)|()( == ∑
g

g egpem
B A

DC)()()|()|()|()|()()( fememafPdcePadPbcPbPaP h⇒
E F),()|(),|()|()|()()(

),()()|(),|()|()|()()(

femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg

=

⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D,E,F

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 3: Eliminate F
t

),()|(),|()|()|()()( ff h

compute
∑=

f
hf femafpaem ),()|(),(

)()|()|()|()()( eamdcePadPbcPbPaP⇒

B A

DC),(),|()|()|()()( eamdcePadPbcPbPaP f⇒
E
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D,E

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 4: Eliminate E
t

),(),|()|()|()()(
),()|(),|()|()|()()(

eamdcePadPbcPbPaP
ff

f

h

⇒

B A

DC

compute
∑=

e
fe eamdcepdcam ),(),|(),,(

)()|()|()()( dcamadPbcPbPaP⇒

B A

DC

E

),,()|()|()()( dcamadPbcPbPaP e⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

),,()|()|()()(

),(),|()|()|()()(

dcamadPbcPbPaP

eamdcePadPbcPbPaP

e

f

⇒

⇒

Step 5: Eliminate D
compute ∑= ed dcamadpcam ),,()|(),(

B A

C∑
d

ed p ),,()|(),(

),()|()()( camdcPbPaP d⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h

⇒
⇒

),()|()()(
),,()|()|()()(

),(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP

d

e

f

⇒
⇒

⇒

Step 6: Eliminate C
compute ∑= dc cambcpbam ),()|(),(

B A

),()|()()( camdcPbPaP d⇒

∑
c

dc p ),()|(),(

47© Eric Xing @ CMU, 2006-2012



Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h

⇒
⇒

),()|()()(
),,()|()|()()(

),(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP

d

e

f

⇒
⇒

⇒

Step 7: Eliminate B
compute

),()()( bambPaP c⇒

∑= cb bambpam ),()()(
A

∑
b

cb p ),()()(

)()( amaP b⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h

⇒
⇒

),()|()()(
),,()|()|()()(

),(),|()|()|()()(

camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP

d

e

f

⇒
⇒

⇒

Step 8: Wrap-up
)()(

),()()(
amaP

bambPaP

b

c

⇒
⇒

,)()()~,( amaphap b= ∑= b amaphp )()()~(Step 8 ap up ,)()(),( pp b

∑
=⇒

a
b

b

amap
amaphaP

)()(
)()()~|(

∑
a

b amaphp )()()(
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Complexity of variable 
elimination

Suppose in one elimination step we compute

elimination

∑=
x

kxkx yyxmyym ),,,('),,( 11 KK

∏=
k

xmyyxm )()(' y

This requires 
multiplications

∏
=

=
i

cikx i
xmyyxm

1
1 ),(),,,( yK

∏•• CXk )Val()Val( Y p

─ For each value of x, y1, …, yk, we do k multiplications

∏
i

Ci
)()(

∏ additions

─ For each value of y1, …, yk , we do |Val(X)| additions

∏•
i

Ci
X )Val()Val( Y

Complexity is exponential in number of variables in the 
intermediate factor
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Elimination Clique
Induced dependency during marginalization is captured in 

Elimination Clique
p y g g p

elimination cliques
Summation <-> elimination
Intermediate term <-> elimination cliqueq

A

B A

C
A

B A A

A

E F
A

DC

A

DC

Can this lead to an generic 
inference algorithm?

E F

H

E

G

E
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From Elimination to Message 
Passing

Elimination ≡ message passing on a clique tree

Passing

Elimination ≡ message passing on a clique tree

B A

C

B A A

bmcm
A

E F
A

DC

A

DC

em
fm

dm

∑
e dcam ),,(

E F

H

E

G

DC

E hm
gm

∑=
e

fg eamemdcep ),()(),|(

Messages can be reused
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From Elimination to Message 
PassingPassing

Elimination ≡ message passing on a clique treeElimination ≡ message passing on a clique tree
Another query ...

B A

C

B A A

cm bm
A

E F
A

DC

A

DC

em

dm
fm

E F

H

E

G

DC

E

gm
hm

Messages mf and mh are reused, others need to be recomputed
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From elimination to message 
passingpassing

Recall ELIMINATION algorithm:
Choose an ordering Z in which query node f is the final node
Place all potentials on an active list
Eliminate node i by removing all potentials containing i, take sum/product over xi.
Place the resultant factor back on the listPlace the resultant factor back on the list

For a TREE graph:
Choose query node f as the root of the tree
View tree as a directed tree with edges pointing towards from f
Elimination ordering based on depth-first traversal
Elimination of each node can be considered asElimination of each node can be considered as 
message-passing (or Belief Propagation) directly 
along tree branches, rather than on some transformed graphs
thus, we can use the tree itself as a data-structure to do general inference!!
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Message passing for treesMessage passing for trees

Let mij(xi) denote the factor resulting
f

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow 
up to i, which is a function of xi:

i This is reminiscent of a message sent 
from j to i.

j

k lk l
mij(xi) represents a "belief" of xi from xj!
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Elimination on trees is equivalent to message passing along q g p g g
tree branches!

f

ii

jj

k l
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The message passing protocol:The message passing protocol:
A two-pass algorithm:p g

X1

(X ) (X )

X

m21(X1)

m32(X2) m42(X2)

m12(X2)

X2

X3
X4

m32(X2) m42(X2)

m24(X4)
3

m23(X3)
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Belief Propagation (SP-algorithm): 
Sequential implementationSequential implementation
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Inference on general GMInference on general GM
Now, what if the GM is not a tree-like graph?

Can we still directly run message 
i t l l it d ?message-passing protocol along its edges?

For non-trees, we do not have the guarantee that message-passing g g p g
will be consistent!

Then what?Then what?
Construct a graph data-structure from P that has a tree structure, and run message-passing 
on it!

Junction tree algorithm
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A Sketch of the Junction Tree 
AlgorithmAlgorithm 

The algorithmg
Construction of junction trees --- a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GMA generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...
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The Shafer Shenoy AlgorithmThe Shafer Shenoy Algorithm
Shafer-Shenoy algorithmy g

Message from clique i to clique j :

∑ ∏= S )(µψµ
Clique marginal 

∑ ∏
≠

→→ =
iji

i
SC jk

kiikCji S
\

)(µψµ

∏∝ SCp )()( µψ ∏ →∝
k

kiikCi SCp
i

)()( µψ
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The Junction tree algorithm for HMMThe Junction tree algorithm for HMM
A junction tree for the HMM

),( 11 xyψ ),( 21 yyψ ),( 32 yyψ ),( TT yy 1−ψ

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 

y yy yy yy

)( 2yζ )( 3yζ )( Tyζ
)( 1yφ )( 2yφ⇒⇒

Rightward pass ),( 22 xyψ ),( 33 xyψ ),( TT xyψ

),( 1+tt yyψ)( ttt y→−1µ )( 11 ++→ ttt yµ

∑ )|()()|(

∑ +↑→−+++→ =
ty

tttttttttt yyyyy )()(),()( 11111 µµψµ

This is exactly the forward algorithm! ),( 11 ++ tt xyψ

)( 1+↑ tt yµ

∑

∑

→−++

++→−+

+
=

=

t

tt

t

y
tttyytt

y
ttttttt

yayxp

yxpyyyp

)()|(

)|()()|(

, 111

1111

1
µ

µ

y g

Leftward pass …
∑

+

+↑++←+←− =
1

11111
ty

tttttttttt yyyyy )()(),()( µµψµ

),( 1+tt yyψ)( ttt y←−1µ )( 11 ++← ttt yµ

)( 1↑ tyµ

This is exactly the backward algorithm! 

+1ty

∑
+

++++←+=
1

11111
ty

ttttttt yxpyyyp )|()()|( µ

),( 11 ++ tt xyψ

)( 1+↑ tt yµ
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SummarySummary
The simple Eliminate algorithm captures the key algorithmic 
Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

This graph interpretation will also provide hints about how to design 
improved inference algorithms 

What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 
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