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Recap of BN RepresentationRecap of BN Representation
Joint probability dist. on multiple variables:
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If Xi's are independent: (P(Xi|·)= P(Xi))
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If Xi's are conditionally independent (as described by a 
GM), the joint can be factored to simpler products, e.g., 
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P(X1, X2, X3, X4, X5, X6)
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p(X6| X2, X5)

p(X1)

p(X5| X4)
p(X4| X1)

( 1, 2, 3, 4, 5, 6)
= P(X1) P(X2| X1) P(X3| X2) P(X4| X1) P(X5| X4) P(X6| X2, X5)
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Inference and LearningInference and Learning
We now have compact representations of probability 
distributions:  BN

A BN M describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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Approaches to inferenceApproaches to inference

Exact inference algorithmsg

The elimination algorithm
Belief propagationp p g
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniquesApproximate inference techniques

Variational algorithmsVariational algorithms 
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
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Marginalization and Elimination
A food web:

Marginalization and Elimination

B A

DC

E F

G H

Query: P(h) ∑∑∑∑∑∑∑=
f d b

hgfedcbaPhP ),,,,,,,()(

What is the probability that hawks are leaving given that the grass condition is poor?

By chain decomposition we get

g f e d c b a

a naïve summation needs to 
enumerate over an exponential 
number of  terms

By chain decomposition, we get
),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

g f e d c b a
∑∑∑∑∑∑∑=
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Variable Elimination
Query: P(A |h) B A

Variable Elimination

Need to eliminate: B,C,D,E,F,G,H

Initial factors:

B A

DC

Choose an elimination order: H,G,F,E,D,C,B

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

Step 1: 
Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):h~

This step is isomorphic to a marginalization step:

),|~(),( fehhpfemh ==
B A
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h
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G
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D,E,F,G

Initial factors:

B A

DC

E F

G H
),()|()|(),|()|()|()()(
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fehPegPafPdcePadPbcPbPaP

h⇒

Step 2: Eliminate G
tcompute
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g
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B A

DC)()()|()|()|()|()()( fememafPdcePadPbcPbPaP h⇒
E F),()|(),|()|()|()()(
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femafPdcePadPbcPbPaP

fememafPdcePadPbcPbPaP

h

hg

=

⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D,E,F

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
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femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 3: Eliminate F
t

),()|(),|()|()|()()( ff h

compute
∑=

f
hf femafpaem ),()|(),(

)()|()|()|()()( eamdcePadPbcPbPaP⇒

B A

DC),(),|()|()|()()( eamdcePadPbcPbPaP f⇒
E
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D,E

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
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femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

Step 4: Eliminate E
t

),(),|()|()|()()(
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eamdcePadPbcPbPaP
ff

f

h

⇒

B A

DC

compute
∑=

e
fe eamdcepdcam ),(),|(),,(

)()|()|()()( dcamadPbcPbPaP⇒

B A

DC

E

),,()|()|()()( dcamadPbcPbPaP e⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C,D

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

),,()|()|()()(
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dcamadPbcPbPaP

eamdcePadPbcPbPaP

e

f

⇒

⇒

Step 5: Eliminate D
compute ∑= ed dcamadpcam ),,()|(),(

B A

C∑
d

ed p ),,()|(),(

),()|()()( camdcPbPaP d⇒
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B,C

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h

h

⇒
⇒
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camdcPbPaP
dcamadPdcPbPaP

eamdcePadPdcPbPaP

d

e

f

⇒
⇒

⇒

Step 6: Eliminate C
compute ∑= dc cambcpbam ),()|(),(

B A

),()|()()( camdcPbPaP d⇒

∑
c

dc p ),()|(),(
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
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femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP

h
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⇒
⇒
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d

e

f

⇒
⇒

⇒

Step 7: Eliminate B
compute

),()()( bambPaP c⇒
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A
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b
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Example: Variable Elimination
Query: P(B |h) B A

Example: Variable Elimination

Need to eliminate: B

Initial factors:

B A

DC

E F

G H),()|(),|()|()|()()(
),()|()|(),|()|()|()()(
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femafPdcePadPdcPbPaP
femegPafPdcePadPdcPbPaP

fehPegPafPdcePadPdcPbPaP
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⇒
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eamdcePadPdcPbPaP

d

e

f

⇒
⇒

⇒

Step 8: Wrap-up
)()(
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b

c

⇒
⇒
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Complexity of variable 
elimination

Suppose in one elimination step we compute

elimination

∑=
x

kxkx yyxmyym ),,,('),,( 11 KK

∏=
k

xmyyxm )()(' y

This requires 
multiplications

∏
=

=
i

cikx i
xmyyxm

1
1 ),(),,,( yK

∏•• CXk )Val()Val( Y p

─ For each value of x, y1, …, yk, we do k multiplications

∏
i

Ci
)()(

∏ additions

─ For each value of y1, …, yk , we do |Val(X)| additions

∏•
i

Ci
X )Val()Val( Y

Complexity is exponential in number of variables in the 
intermediate factor
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Elimination Clique
Induced dependency during marginalization is captured in 

Elimination Clique
p y g g p

elimination cliques
Summation <-> elimination
Intermediate term <-> elimination cliqueq

A

B A

C
A

B A A

A

E F
A

DC

A

DC

Can this lead to an generic 
inference algorithm?

E F

H

E

G

E
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From Elimination to Message 
Passing

Elimination ≡ message passing on a clique tree

Passing

Elimination ≡ message passing on a clique tree

B A

C

B A A

bmcm
A

E F
A

DC

A

DC

em
fm

dm

∑
e dcam ),,(

E F

H

E

G

DC

E hm
gm

∑=
e

fg eamemdcep ),()(),|(

Messages can be reused
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From Elimination to Message 
PassingPassing

Elimination ≡ message passing on a clique treeElimination ≡ message passing on a clique tree
Another query ...

B A

C

B A A

cm bm
A

E F
A

DC

A

DC

em

dm
fm

E F

H

E

G

DC

E

gm
hm

Messages mf and mh are reused, others need to be recomputed
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From elimination to message 
passingpassing

Recall ELIMINATION algorithm:
Choose an ordering Z in which query node f is the final node
Place all potentials on an active list
Eliminate node i by removing all potentials containing i, take sum/product over xi.
Place the resultant factor back on the listPlace the resultant factor back on the list

For a TREE graph:
Choose query node f as the root of the tree
View tree as a directed tree with edges pointing towards from f
Elimination ordering based on depth-first traversal
Elimination of each node can be considered asElimination of each node can be considered as 
message-passing (or Belief Propagation) directly 
along tree branches, rather than on some transformed graphs
thus, we can use the tree itself as a data-structure to do general inference!!
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Message passing for treesMessage passing for trees

Let mij(xi) denote the factor resulting
f

Let mij(xi) denote the factor resulting 
from eliminating variables from bellow 
up to i, which is a function of xi:

i This is reminiscent of a message sent 
from j to i.

j

k lk l
mij(xi) represents a "belief" of xi from xj!
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Elimination on trees is equivalent to message passing along q g p g g
tree branches!

f

ii

jj

k l
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The message passing protocol:The message passing protocol:
A two-pass algorithm:p g

X1

(X ) (X )

X

m21(X1)

m32(X2) m42(X2)

m12(X2)

X2

X3
X4

m32(X2) m42(X2)

m24(X4)
3

m23(X3)
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Belief Propagation (SP-algorithm): 
Sequential implementationSequential implementation
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Inference on general GMInference on general GM
Now, what if the GM is not a tree-like graph?

Can we still directly run message 
i t l l it d ?message-passing protocol along its edges?

For non-trees, we do not have the guarantee that message-passing g g p g
will be consistent!

Then what?Then what?
Construct a graph data-structure from P that has a tree structure, and run message-passing 
on it!

Junction tree algorithm

23© Eric Xing @ CMU, 2006-2012



A Sketch of the Junction Tree 
AlgorithmAlgorithm 

The algorithmg
Construction of junction trees --- a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GMA generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...
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The Shafer Shenoy AlgorithmThe Shafer Shenoy Algorithm
Shafer-Shenoy algorithmy g

Message from clique i to clique j :

∑ ∏= S )(µψµ
Clique marginal 

∑ ∏
≠

→→ =
iji

i
SC jk

kiikCji S
\

)(µψµ

∏∝ SCp )()( µψ ∏ →∝
k

kiikCi SCp
i

)()( µψ
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The Junction tree algorithm for HMMThe Junction tree algorithm for HMM
A junction tree for the HMM

),( 11 xyψ ),( 21 yyψ ),( 32 yyψ ),( TT yy 1−ψ

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 

y yy yy yy

)( 2yζ )( 3yζ )( Tyζ
)( 1yφ )( 2yφ⇒⇒

Rightward pass ),( 22 xyψ ),( 33 xyψ ),( TT xyψ

),( 1+tt yyψ)( ttt y→−1µ )( 11 ++→ ttt yµ

∑ )|()()|(

∑ +↑→−+++→ =
ty

tttttttttt yyyyy )()(),()( 11111 µµψµ

This is exactly the forward algorithm! ),( 11 ++ tt xyψ

)( 1+↑ tt yµ

∑

∑

→−++

++→−+

+
=

=

t

tt

t

y
tttyytt

y
ttttttt

yayxp

yxpyyyp

)()|(

)|()()|(

, 111

1111

1
µ

µ

y g

Leftward pass …
∑

+

+↑++←+←− =
1

11111
ty

tttttttttt yyyyy )()(),()( µµψµ

),( 1+tt yyψ)( ttt y←−1µ )( 11 ++← ttt yµ

)( 1↑ tyµ

This is exactly the backward algorithm! 

+1ty

∑
+

++++←+=
1

11111
ty

ttttttt yxpyyyp )|()()|( µ

),( 11 ++ tt xyψ

)( 1+↑ tt yµ
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Summary: Exact InferenceSummary: Exact Inference
The simple Eliminate algorithm captures the key algorithmic 
Operation underlying probabilistic inference:
--- That of taking a sum over product of potential functions

The computational complexity of the Eliminate algorithm can be 
reduced to purely graph-theoretic considerations. 

This graph interpretation will also provide hints about how to design 
improved inference algorithms 

What can we say about the overall computational complexity of the 
algorithm? In particular, how can we control the "size" of the 
summands that appear in the sequence of summation operation. 
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Approaches to inferenceApproaches to inference

Exact inference algorithmsg

The elimination algorithm
Belief propagationp p g
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniquesApproximate inference techniques

Variational algorithmsVariational algorithms 
Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
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Monte Carlo methodsMonte Carlo methods
Draw random samples from the desired distribution p

Yield a stochastic representation of a complex distribution
marginals and other expections can be approximated using sample-based 
averages

∑
=

=
N

t

txf
N

xf
1

1 )()]([ )(E

Asymptotically exact and easy to apply to arbitrary models

Challenges:
h t d l f i di t ( t ll di t ib ti b t i i llhow to draw samples from a given dist. (not all distributions can be trivially 
sampled)?

how to make better use of the samples (not all sample are useful, or eqally 
useful, see an example later)?, p )

how to know we've sampled enough?
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Example: naive samplingExample: naive sampling
Construct samples according to probabilities given in a BN.p g p g

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1
Alarm example: (Choose the right sampling 
sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0 Same for E0 P(A|B0 E0)=<0 001 0 999>

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0
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B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> 
suppose it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0 B0 A0 M0 J0E0 B0 A0 M0 J0



Example: naive samplingExample: naive sampling
Construct samples according to probabilities given in a BN.p g p g

Alarm example: (Choose the right sampling 
)

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1) P(J A1)/P(A1) 0 1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1) P(J B1)/P(B1) t b d fi d

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more 
variables, rare events will be very hard to 

h l ft l

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0
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Markov chain Monte Carlo 
(MCMC)(MCMC)

Construct a Markov chain whose stationary distribution is the y
target density  = P(X|e).
Run for T samples (burn-in time) until the chain       
converges/mixes/reaches stationary distributionconverges/mixes/reaches stationary distribution.
Then collect M (correlated) samples xm .
Key issues:y

Designing proposals so that the chain mixes rapidly.
Diagnosing convergence.
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Markov ChainsMarkov Chains
Definition:

Given an n-dimensional state space
Random vector X = (x1,…,xn)
x(t) = x at time-step t
x(t) transitions to x(t+1) with prob

P(x(t+1) | x(t),…,x(1)) = T(x(t+1) | x(t)) = T(x(t) x(t+1)) 

Homogenous: chain determined by state x(0), fixed transition g y
kernel Q (rows sum to 1)
Equilibrium: π(x) is a stationary (equilibrium) distribution if 

π(x') = Σ π(x) Q(x x')π(x ) = Σxπ(x) Q(x x ). 
i.e., is a left eigenvector of the transition matrix πT = πTQ.

⎞⎛ 7500250

0.25 0.7
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Gibbs samplingGibbs sampling
The transition matrix updates each node one at a time using p g
the following proposal: 

( ) )|'(),'(),( iiiiii xpxx −−− =→ xxxQ

It is efficient since                  only depends on the values in Xi’s Markov )|( '
iixp −x

blanket
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Gibbs samplingGibbs sampling
Gibbs sampling is an MCMC algorithm that is especially 
appropriate for inference in graphical models.

The procedue
we have variable set X={x1, x2, x3,... xN} for a GM

at each step one of the variables Xi is selected (at random or according 
to some fixed sequences), denote the remaining variables as X-i , and its 

( 1)current value as x-i
(t-1)

Using the "alarm network" as an example, say at time t we choose XE, and we 
denote the current value assignments of the remaining variables, X-E , 
obtained from previous samples as { })()()()()( 11111 −−−−− ttttt xxxxxobtained from previous samples, as 

the conditonal distribution p(Xi| x-i
(t-1)) is computed

a value xi
(t) is sampled from this distribution

{ })()()()()( ,,,− = MJABE xxxxx

the sample xi
(t) replaces the previous sampled value of Xi in  X.

i.e., 
© Eric Xing @ CMU, 2006-2012
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Markov BlanketMarkov Blanket
Markov Blanket in BN

A variable is independent from 
others, given its parents, children 
and children‘s parents (d-
separation).separation).

MB in MRF
A variable is independent all its 
non neighbors given all its directnon-neighbors, given all its direct 
neighbors.

⇒ p(Xi| X-i)= p(Xi| MB(Xi))

Gibbs sampling
Every step, choose one variable 
and sample it by P(X|MB(X)) based 

i l
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Gibbs sampling of the alarm 
networknetwork

To calculate P(J|B1,M1)To calculate P(J|B1,M1)
Choose (B1,E0,A1,M1,J1) as a 
start
Evidences are B1 M1 variablesEvidences are B1, M1, variables
are A, E, J.
Choose next variable as A
S l A bSample A by 
P(A|MB(A))=P(A|B1, E0, M1, J1) 
suppose to be false.
(B1 E0 A0 M1 J1)(B1, E0, A0, M1, J1)
Choose next random variable 
as E, sample E~P(E|B1,A0) 
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...MB(A)={B, E, J, M}
MB(E)={A, B}



ExampleExample
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Example:Example:
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ExampleExample
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ExampleExample
P(J1 | B1,M1) = 0.90( | )
P(J1 | E1,M0) = 0.14
P(E1 | J1)       = 0.01
P(E1 | M1)      = 0.04
P(E1 | M1,J1) = 0.17
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The of simulationThe                   of simulation

Run several chains Re-parameterize (to get 
Start at over-dispersed 
points

p ( g
approx. indep.)
Re-block (Gibbs)

Monitor the log lik.
Monitor the serial 

l ti

Collapse (int. over other 
pars.)
R ith t bl dcorrelations

Monitor acceptance ratios
Run with troubled pars. 
fixed at reasonable vals.
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Learning Graphical Models

The goal:

Learning Graphical Models

g

Given set of independent samples (assignments of 
random variables) find the best (the most likely?)random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)

E BE B

R A

C

R A

C

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

C

0.9 0.1

e 0 2 0 8

be
b

BE P(A | E,B)
C

……..
(B,E,A,C,R)=(F,T,T,T,F)

e

b
e

0.2 0.8

0.01 0.99
0.9 0.1

b
b

e
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Learning Graphical Models 
(cont )(cont.)

Scenarios:
completely observed GMs

directed
undirected 

partially observed GMs
directed
undirected (an open research topic) 

Estimation principles:
Maximal likelihood estimation (MLE)
Bayesian estimationy
Maximal conditional likelihood
Maximal "Margin" 

W l i f th f ti ti thWe use learning as a name for the process of estimating the 
parameters, and in some cases, the topology of the network, from 
data.
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MLE for general BN parametersMLE for general BN parameters
If we assume the parameters for each CPD are globally p g y
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:p

∑ ∑∏ ∏ ⎟
⎠

⎞
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

i n
inin

n i
inin ii

xpxpDpD ),|(log),|(log)|(log);( ,,,, θθθθ ππ xxl

X2=1 X5=0X2 1

X2=0

X5 0

X5=1
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Example: decomposable 
likelihood of a directed model

Consider the distribution defined by the directed acyclic GM:

likelihood of a directed model
y y

),,|(),|(),|()|()|( 432431321211 θθθθθ xxxpxxpxxpxpxp =

This is exactly like learning four separate small BNs, each of 
which consists of a node and its parentswhich consists of a node and its parents.

X1
X1

X1 X1

X2 X3
X2 X3

X2 X3

X4 X4
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E.g.: MLE for BNs with tabular 
CPDsCPDs

Assume each CPD is represented as a table (multinomial) 
where

Note that in case of multiple parents,      will have a composite 

)|(
def

kXjXp
iiijk === πθ

πXp p p
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

iπ

∑= kj xxn
def

The log-likelihood is

∑=
n ninijk i

xxn π,,

∑∏ ==
kji

ijkijk
kji

n
ijk nD ijk

,,,,

loglog);( θθθl

Using a Lagrange multiplier 
to enforce               , we get:1=∑j ijkθ ∑

=

kji
kij

ijkML
ijk n

n

'
'

θ

kji ,,
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Recall definition of HMMRecall definition of HMM
Transition probabilities between y2 y3y1 yT...
any two states

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... ,)|( , ji
i
t

j
t ayyp === − 11 1

or

St t b biliti

( ) .,,,,lMultinomia~)|( ,,, I∈∀=− iaaayyp Miii
i
tt K211 1

Start probabilities 

( ).,,,lMultinomia~)( Myp πππ K211

Emission probabilities associated with each state

( ) .,,,,lMultinomia~)|( ,,, I∈∀= ibbbyxp Kiii
i
tt K211

or in general: ( ) .,|f~)|( I∈∀⋅= iyxp i
i
tt θ1
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Supervised ML estimationSupervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is 
known,

Define:
∏ ∏∏ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

==
−

n

T

t
tntn

T

t
tntnn xxpyypypp

1
,,

2
1,,1, )|()|()(log),(log),;( yxyxθl

Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:

∑∑ ∑
∑ ∑ ==

•→
→

=
= −

= −

' ',

,,

)(#
)(#

j ij

ij

n
T
t

i
tn

j
tnn

T
t

i
tnML

ij A
A

y
yy

i
jia

2 1

2 1

∑∑ ∑
∑ ∑ ==

•→
→

=
=

=

' ',

,,

)(#
)(#

k ik

ik

n
T
t

i
tn

k
tnn

T
t

i
tnML

ik B
B

y
xy

i
kib

1

1

( ){ }If y is continuous, we can treat                                               as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …

( ){ }NnTtyx tntn :,::, ,, 11 ==
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What if some nodes are not 
observed?

Consider the distribution defined by the directed acyclic GM:

observed?
y y

),,|(),|(),|()|()|( 132431311211 θθθθθ xxxpxxpxxpxpxp =

X1

X2 X3

X4

Need to compute p(xH|xV) inference
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MLE for BNs with tabular CPDsMLE for BNs with tabular CPDs
Assume each CPD is represented as a table (multinomial) 
where

Note that in case of multiple parents,      will have a composite 

)|(
def

kXjXp
iiijk === πθ

πXp p p
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

iπ

∑ kj xxn
def

The log-likelihood is

∑=
n n

j
inijk i
xxn π,,

∑∏ ==
kji

ijkijk
kji

n
ijk nD ijk

,,,,

loglog);( θθθl

Using a Lagrange multiplier 
to enforce               , we get:1=∑j ijkθ ∑

=

kji
kij

ijkML
ijk n

n

'
'

θ

kji ,,
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SummarySummary

A GMM d ib i b bilit di t ib ti PA GMM describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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