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Learning Theory

* We have explored many ways of learning from
data

 But...

— How good is our classifier, really?
— How much data do | need to make it “good enough”?



A simple setting

e Classification
— mi.i.d. data points

— Finite number of possible hypothesis (e.g., dec. trees
of depth d)

* Alearner finds a hypothesis h that is consistent
with training data

— Gets zero error in training, error,,...(h) =0

* What is the probability that h has more than ¢
true error?

— error, .(h) 2 €
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Even if h makes zero errors in training data, may make errors in test



How likely is a bad hypothesis to get
m data points right?

* Hypothesis h that is consistent with training data
— got mi.i.d. points right
— h “bad” if it gets all this data right, but has high true
error

* Prob. h with error,, .(h) > ¢ gets one data point

right <1 e

* Prob. h with error,, .(h) 2 € gets m data points
right < (1-¢)m



How likely is a learner to pick a bad
hypothesis?

* Usually there are many possible hypothesis that are
consistent with training data.

* If there are k hypothesis consistent with data, how likely is
learner to pick a bad one?

Prob(error,,.(h,) 2 € and h, consistent OR
error,..(h,) =2 € and h, consistent OR ... OR
error,,.(h,) = € and h, consistent)

< Prob(error,,.(h;) 2 € and h, consistent) + t}n'oz
: oun
Prob(error,.(h,) 2 € and h, consistent) + ... + "~
Prob(error,,.(h,) = € and h, consistent) works
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< k(1-¢)™



How likely is a learner to pick a bad
hypothesis?

* Usually there are many possible hypothesis that are
consistent with training data.

* If there are k hypothesis consistent with data, how likely is
learner to pick a bad one?

< k(l-€)™ < [H| (1-e)"< [H| e
L— Size of hypothesis class

N




PAC (Probably Approximately
Correct) bound

 Theorem [Haussler’88]: Hypothesis space H finite,
dataset D with mi.i.d. samples, 0 < e <1 :forany
learned hypothesis h that is consistent on the

training data:

P(errortrue(h) > 6) < ‘H‘e—meg 0

* Equivalently, with probability > 1 — 0
erroryrqye(h) <e

Important: PAC bound holds for all h, but doesn’t guarantee that ,
algorithm finds best h!!!



Using a PAC bound

|[Hlem "< 0

* Given € and 9, yields sample complexity

#training data, m >

In|H|

1
lng

€

* Given m and 9, yields error bound

error,

€ 2>

In|H|

1
lﬂg

m



Limitations of Haussler’88 bound

e Consistent classifier

h such that zero error in training, error,,_..(h) =0

 Dependence on Size of hypothesis space

In|H|+ In 3
m 2

€

what if |H| too big or H is continuous?



What if our classifier does not have
zero error on the training data?

* Alearner with zero training errors may make
mistakes in test set

e What about a learner with error
set?

+ainl1) 2 0in training

* The error of a hypothesis is like estimating the
parameter of a coin!

error,. .(h) := P(h(X) #Y) = P(H=1)=:0

1 1 ~
error,,,.(h) := — Z Ly(x,)2y, = — Z Z; =:0
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Hoeffding’s Bound for a single
hypothesis

* Consider mi.i.d. flips x,,...,x.,, where x, € {0,1} of
a coin with parameter 0. For O<e<1.:

1

2

* For a single hypothesis h

2
P (erroryye(h ) — erroram(h )| > €) < 2 2™M¢
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PAC bound for |H| hypotheses

* For each hypothesis h::
2
P (Ierrortrue(hz') — errortrain(hi)lz e) < 26_2m€

 What if we are comparing |H| hypotheses?

Union bound

 Theorem: Hypothesis space H finite, dataset D with
m i.i.d. samples, 0 < € <1 :for any learned hypothesis
h &€ H:
P (errorirue(h) — erroriam(h) > €) < 2|H|e 2™ < §

Important: PAC bound holds for all h, but doesn’t guarantee that,
algorithm finds best h!!!



PAC bound and Bias-Variance tradeoff

P (lerroftrye(h) — €rrory.qin(h)| >e€) < Q‘H’€_2m€2§ 0

* Equivalently, with probability > 1 _ 5

2
In|H|-|—In3

2m

errortrue(h) < errortraz’n(h) | \

* Fixed m l l

hypothesis space

complex small large
simple large small
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What about the size of the hypothesis

space? ,
2|H|e 2™ < §
 Sample complexity

 How large is the hypothesis space?
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Number of decision trees of depth k

Recursive solution: m > 1 (m |H| + In %)

Given n attributes 2¢2
H, = Number of decision trees of depth k
Hy= 2
H, = (#choices of root attribute)
*(# possible left subtrees)
*(# possible right subtrees) =n*H,; *H, ,

Write L, = log, H,
L, =1
=log, n+ 2L, ,=log, n+2(log, n + 2L, ,)
=log, n + 2log, n + 22log, n + ... +2X(log, n + 2L,)
So L, =(2%1)(1+log, n) +1 15



PAC bound for decision trees of depth k

In 2 2
m> s ((2’“ _1)(1 4 logon) + 14 logzg)

e Badl!!!
— Number of points is exponential in depth k!

* But, for m data points, decision tree can’t get too big...

Number of leaves never more than number data points
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Number of decision trees with k leaves

m > 1 (In H| + Inz)
H, = Number of decision trees with k leaves 2¢? 0
H, =2
H, = (#choices of root attribute) *
[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)

+ (# left subtrees wth 2 leaves)™*(# right subtrees wth k-2 leaves)

+ ...

+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)]

k—1

Hp=n Z HiHp—; =nk1C, , (C,., : Catalan Number)

1 =1
Loose bound (using Sterling’s approximation):

Hk S nk—122k—1 i



Number of decision trees
1 2
e With k leaves mz52 ('” H| '“5)

logy, H, < (k—1)logyn + 2k — 1 linear in k

number of points mis linear in #leaves

* With depth k

log, H, = (2%1)(1+log, n) +1 exponential in k

number of points m is exponential in depth
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PAC bound for decision trees with k
leaves — Bias-Variance revisited

2
In[H| 4+ In%

2m

With prob > 1-0 erroryue(h) < errory.qin(h) + J

With H, < n*7122*=1 we get

2
(k—1)Inn+ (2k —1)In2+1n %

errortrue(h) < errortrain(h)+\/

| |

k=m 0 large (~ > %)
k<m >0 small (~<¥%) =

2m




What did we learn from decision trees?

e Bias-Variance tradeoff formalized

2
k—1)lnn+ (2k—-1)In2+1n%

2m

errorirye(h) < errorygin(h)—+ \/ (

 Moral of the story:

Complexity of learning not measured in terms of size
hypothesis space, but in maximum number of points
that allows consistent classification

— Complexity m — no bias, lots of variance
— Lower than m — some bias, less variance
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What about continuous hypothesis
spaces?

In|H|+In%

2m

errortrue(h) < errortrain(h) + \

* Continuous hypothesis space:
— |H| =00
— Infinite variance???

* As with decision trees, only care about the
maximum number of points that can be
classified exactly!
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