Learning Theory

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781 Nov 5, 2012

Slides courtesy: Carlos Guestrin

Learning Theory

- We have explored many ways of learning from data
- But...
 - How good is our classifier, really?
 - How much data do I need to make it "good enough"?

A simple setting

- Classification
 - m i.i.d. data points
 - Finite number of possible hypothesis (e.g., dec. trees of depth d)
- A learner finds a hypothesis h that is consistent with training data
 - Gets zero error in training, error_{train}(h) = 0
- What is the probability that h has more than ϵ true error?
 - $error_{true}(h) ≥ ε$

3

How likely is a bad hypothesis to get m data points right?

- Hypothesis h that is consistent with training data
 - \rightarrow got m i.i.d. points right
 - h "bad" if it gets all this data right, but has high true error
- Prob. h with error_{true}(h) $\geq \varepsilon$ gets one data point right $\leq 1-\varepsilon$
- Prob. h with error_{true}(h) $\geq \varepsilon$ gets m data points right $\leq (1-\varepsilon)^m$

How likely is a learner to pick a bad hypothesis?

- Usually there are many possible hypothesis that are consistent with training data.
- If there are k hypothesis consistent with data, how likely is learner to pick a bad one?

```
Prob(error<sub>true</sub>(h_1) \geq \epsilon and h_1 consistent OR
error<sub>true</sub>(h_2) \geq \epsilon and h_2 consistent OR ... OR
error<sub>true</sub>(h_k) \geq \epsilon and h_k consistent)
```

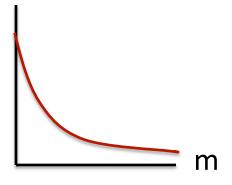
```
\leq Prob(error<sub>true</sub>(h<sub>1</sub>) \geq \epsilon and h<sub>1</sub> consistent) + 
Prob(error<sub>true</sub>(h<sub>2</sub>) \geq \epsilon and h<sub>2</sub> consistent) + ... + 
Prob(error<sub>true</sub>(h<sub>k</sub>) \geq \epsilon and h<sub>k</sub> consistent)
```

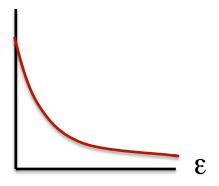
Union bound Loose but works

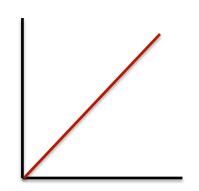
How likely is a learner to pick a bad hypothesis?

- Usually there are many possible hypothesis that are consistent with training data.
- If there are k hypothesis consistent with data, how likely is learner to pick a bad one?

$$\leq k (1-\epsilon)^m \leq |H| (1-\epsilon)^m \leq |H| e^{-\epsilon m}$$
 \longrightarrow Size of hypothesis class







PAC (Probably Approximately Correct) bound

• **Theorem [Haussler'88]**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis h that is consistent on the training data:

$$P(\text{error}_{true}(h) \ge \epsilon) \le |H|e^{-m\epsilon} \le \delta$$

• Equivalently, with probability $\geq 1-\delta$

$$error_{true}(h) \leq \epsilon$$

Important: PAC bound holds for all h, but doesn't guarantee that $_{7}$ algorithm finds best h!!!

Using a PAC bound

$$|H|e^{-m\epsilon} \le \delta$$

• Given ε and δ , yields sample complexity

#training data,
$$m \geq \frac{\ln |H| + \ln \frac{1}{\delta}}{\epsilon}$$

• Given m and δ , yields error bound

error,
$$\epsilon \geq \frac{\ln|H| + \ln\frac{1}{\delta}}{m}$$

Limitations of Haussler'88 bound

Consistent classifier

h such that zero error in training, $error_{train}(h) = 0$

Dependence on Size of hypothesis space

$$m \ge \frac{\ln|H| + \ln\frac{1}{\delta}}{\epsilon}$$

what if |H| too big or H is continuous?

What if our classifier does not have zero error on the training data?

- A learner with zero training errors may make mistakes in test set
- What about a learner with error_{train}(h) ≠ 0 in training set?
- The error of a hypothesis is like estimating the parameter of a coin!

$$error_{true}(h) := P(h(X) \neq Y) \equiv P(H=1) =: \theta$$

$$error_{train}(h) := \frac{1}{m} \sum_{i} \mathbf{1}_{h(X_i) \neq Y_i} \equiv \frac{1}{m} \sum_{i} Z_i =: \widehat{\theta}$$

Hoeffding's Bound for a single hypothesis

• Consider m i.i.d. flips $x_1,...,x_m$, where $x_i \in \{0,1\}$ of a coin with parameter θ . For $0 < \epsilon < 1$:

$$P\left(\left|\theta - \frac{1}{m}\sum_{i}x_{i}\right| \ge \epsilon\right) \le 2e^{-2m\epsilon^{2}}$$

For a single hypothesis h

$$P\left(|\operatorname{error}_{true}(h) - \operatorname{error}_{train}(h)| \ge \epsilon\right) \le 2e^{-2m\epsilon^2}$$

PAC bound for | H | hypotheses

For each hypothesis h_i:

$$P\left(|\operatorname{error}_{true}(h_i) - \operatorname{error}_{train}(h_i)| \ge \epsilon\right) \le 2e^{-2m\epsilon^2}$$

- What if we are comparing |H| hypotheses?
 Union bound
- **Theorem**: Hypothesis space H finite, dataset D with m i.i.d. samples, $0 < \varepsilon < 1$: for any learned hypothesis $h \in H$:

$$P\left(\operatorname{perror}_{true}(h) - \operatorname{error}_{train}(h) | \geq \epsilon\right) \leq 2|H|e^{-2m\epsilon^2} \leq \delta$$

Important: PAC bound holds for all h, but doesn't guarantee that algorithm finds best h!!!

PAC bound and Bias-Variance tradeoff

$$P(|\text{error}_{true}(h) - \text{error}_{train}(h)| \ge \epsilon) \le 2|H|e^{-2m\epsilon^2} \le \delta$$

• Equivalently, with probability $> 1 - \delta$

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{2}{\delta}}{2m}}$$

Fixed m

otnesis space		
complex	small	large
simple	large	small

What about the size of the hypothesis space?

 $2|H|e^{-2m\epsilon^2} \le \delta$

Sample complexity

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)$$

How large is the hypothesis space?

Number of decision trees of depth k

```
m \geq \frac{1}{2\epsilon^2} \left( \ln|H| + \ln\frac{2}{\delta} \right)
Recursive solution:
Given n attributes
H_k = Number of decision trees of depth k
H_0 = 2
H_{k} = (\text{\#choices of root attribute})
      *(# possible left subtrees)
      *(# possible right subtrees) = n * H_{k-1} * H_{k-1}
Write L_k = \log_2 H_k
L_0 = 1
L_k = \log_2 n + 2L_{k-1} = \log_2 n + 2(\log_2 n + 2L_{k-2})
                       = \log_2 n + 2\log_2 n + 2^2\log_2 n + ... + 2^{k-1}(\log_2 n + 2L_0)
So L_k = (2^k-1)(1+\log_2 n) +1
                                                                                       15
```

PAC bound for decision trees of depth k

$$m \ge \frac{\ln 2}{2\epsilon^2} \left((2^k - 1)(1 + \log_2 n) + 1 + \log_2 \frac{2}{\delta} \right)$$

- Bad!!!
 - Number of points is exponential in depth k!

But, for m data points, decision tree can't get too big...

Number of leaves never more than number data points

Number of decision trees with k leaves

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)$$

 H_k = Number of decision trees with k leaves

$$H_1 = 2$$

 $H_k = (\#choices of root attribute) *$

[(# left subtrees wth 1 leaf)*(# right subtrees wth k-1 leaves)

+ (# left subtrees wth 2 leaves)*(# right subtrees wth k-2 leaves)

+ ...

+ (# left subtrees wth k-1 leaves)*(# right subtrees wth 1 leaf)]

$$H_k = n \sum_{i=1}^{k-1} H_i H_{k-i} = n^{k-1} C_{k-1}$$
 (C_{k-1}: Catalan Number)

Loose bound (using Sterling's approximation):

$$H_k < n^{k-1} 2^{2k-1}$$

Number of decision trees

With k leaves

$$m \ge \frac{1}{2\epsilon^2} \left(\ln|H| + \ln\frac{2}{\delta} \right)$$

$$\log_2 H_k \le (k-1)\log_2 n + 2k - 1$$
 linear in k number of points m is linear in #leaves

With depth k

 $log_2 H_k = (2^k-1)(1+log_2 n) +1$ exponential in k number of points m is exponential in depth

PAC bound for decision trees with k leaves – Bias-Variance revisited

With prob
$$\geq 1-\delta$$
 error_{true} $(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{2}{\delta}}{2m}}$

With
$$H_k \leq n^{k-1}2^{2k-1}$$
, we get

What did we learn from decision trees?

Bias-Variance tradeoff formalized

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{(k-1)\ln n + (2k-1)\ln 2 + \ln \frac{2}{\delta}}{2m}}$$

Moral of the story:

Complexity of learning not measured in terms of size hypothesis space, but in maximum *number of points* that allows consistent classification

- Complexity m no bias, lots of variance
- Lower than m some bias, less variance

What about continuous hypothesis spaces?

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{2}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - $|H| = \infty$
 - Infinite variance???

 As with decision trees, only care about the maximum number of points that can be classified exactly!