Learning Theory II

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781 Nov 7, 2012

Slides courtesy: Carlos Guestrin

Summary of PAC bounds for finite hypothesis spaces

With probability $\geq 1-\delta$,

1) For all
$$h \in H$$
 s.t. $error_{train}(h) = 0$, $error_{true}(h) \le \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$

2) For all
$$h \in H$$

 $|error_{true}(h) - error_{train}(h)| \le \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$

What about continuous hypothesis spaces?

spaces?
$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{2}{\delta}}{2m}}$$

- Continuous hypothesis space:
 - $|H| = \infty$
 - Infinite variance???
- As with decision trees, complexity of hypothesis space only depends on maximum number of points that can be classified exactly (and not necessarily its size)!

How many points can a linear boundary classify exactly? (1-D)

There exists placement s.t. all labelings can be classified

How many points can a linear boundary classify exactly? (2-D)

There exists placement s.t. all labelings can be classified

How many points can a linear boundary classify exactly? (d-D)

d+1 pts

How many parameters in linear Classifier in d-Dimensions?

$$w_0 + \sum_{i=1}^d w_i x_i$$

d+1

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves

$$\operatorname{error}_{true}(h) \leq \operatorname{error}_{train}(h) + 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$$
 Instead of $\ln|H|$

Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

For all binary partitions of S into (S+,S-), there exists a classifier in H that classifies S+ as positive and S- as negative.

VC dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

- You pick set of points
- Adversary assigns labels
- You find a hypothesis in H consistent with the labels

PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

w.p. ≥ 1-δ		VC(H) (in m) 1	$\frac{8}{1 \cdot 10^8}$
$error_{true}(h) \leq error_{train}(h) + 8$		$\frac{VC(H)\left(\ln\frac{m}{VC(H)}+1\right)+\ln\frac{8}{\delta}}{}$	
		\backslash $2m$	
linear classifiers		↓	
2D	large	small	
10,000 D	small	large	31

Examples of VC dimension

- Linear classifiers:
 - -VC(H) = d+1, for d features plus constant term

Another VC dim. example - What can we shatter?

What's the VC dim. of decision stumps in 2d?

$$VC(H) \ge 3$$

Another VC dim. example - What can't we shatter?

What's the VC dim. of decision stumps in 2d?
 If VC(H) = 3, then for all placements of 4 pts, there exists a labeling that can't be shattered

Examples of VC dimension

- Linear classifiers:
 - -VC(H) = d+1, for d features plus constant term

Decision stumps: VC(H) = d+1 (3 if d=2)

Another VC dim. example - What can we shatter?

 What's the VC dim. of axis parallel rectangles in 2d? sign(1- 2*1_{x∈rectangle})

 $VC(H) \ge 3$

Another VC dim. example - What can't we shatter?

 What's the VC dim. of axis parallel rectangles in 2d? sign(1- 2*1_{x∈rectangle})

• Some placement of 4 pts can't be shattered

Another VC dim. example - What can't we shatter?

 What's the VC dim. of axis parallel rectangles in 2d? sign(1- 2*1_{x∈rectangle})

If VC(H) = 4, then for all placements of 5 pts, there exists a labeling that can't be shattered

Examples of VC dimension

- Linear classifiers:
 - -VC(H) = d+1, for d features plus constant term

- Decision stumps: VC(H) = d+1
- Axis parallel rectangles: VC(H) = 2d (4 if d=2)
- 1 Nearest Neighbor: $VC(H) = \infty$

VC dimension and size of hypothesis space

 To be able to shatter m points, how many hypothesis do we need?

Given |H| hypothesis can hope to shatter max m=log₂|H| points

$$VC(H) \leq \log_2 |H|$$

So VC bound is tighter.

Summary of PAC bounds

With probability $\geq 1-\delta$,

- 1) for all $h \in H$ s.t. $error_{train}(h) = 0$,
- $\operatorname{error}_{\mathsf{true}}(\mathsf{h}) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$ for all $\mathsf{h} \in \mathsf{H}$, $|\operatorname{error}_{\mathsf{true}}(\mathsf{h}) \operatorname{error}_{\mathsf{train}}(\mathsf{h})| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$ 2) for all $h \in H$,

3) for all
$$h \in H$$
, $|\operatorname{error}_{\mathsf{train}}(h)| \le \varepsilon = 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$

Using PAC bound to pick a hypothesis

Empirical Risk Minimization (ERM)

$$\widehat{h} = \arg\min_{h \in H} \ \operatorname{error}_{\operatorname{train}}(h)$$

$$\operatorname{error}_{\operatorname{true}}(\widehat{h}) \leq \operatorname{error}_{\operatorname{train}}(\widehat{h}) + \epsilon \qquad w.p. \geq 1 - \delta$$

$$= \min_{h \in H} \ \operatorname{error}_{\operatorname{train}}(h) + \epsilon$$

$$\leq \min_{h \in H} \ \operatorname{error}_{\operatorname{true}}(h) + 2\epsilon$$

 If training error is best possible in H, then true error is also close to best possible in H (with high probability)

Structural Risk Minimization (SRM)

model spaces
$$H_1, H_2, ..., H_k, ...$$
 of increasing complexity $|H_1| \le |H_2| \le ... \le |H_k| \le ...$ OR $VC(H_1) \le VC(H_2) \le ... \le VC(H_k) \le ...$

For each hypothesis space H_k , we know with probability $\geq 1-\delta_k$, for all $h \in H_k$

$$error_{true}(h) \le error_{train}(h) + \varepsilon(H_k)$$
 depends on $|H_k|$ or $VC(H_k)$

As complexity k increases, error_{train} goes down but $\varepsilon(H_k)$ goes up – Bias variance tradeoff

Structural Risk Minimization (SRM)

ERM within each model space

$$\hat{h}_{k} = \arg\min_{h \in H_{k}} \operatorname{error}_{\operatorname{train}}(h)$$

Choose model space (minimize upper bound on true error)

$$\widehat{k} = \arg\min_{k \ge 1} \left\{ \operatorname{error}_{\operatorname{train}}(\widehat{h}_k) + \epsilon(H_k) \right\}$$

Final hypothesis

$$\widehat{h} = \widehat{h}_{\widehat{k}}$$

Structural Risk Minimization (SRM)

$$\widehat{k} = \arg\min_{k \ge 1} \left\{ \operatorname{error}_{\operatorname{train}}(\widehat{h}_k) + \epsilon(H_k) \right\}$$

 How good is the final hypothesis picked by SRM relative to best hypothesis in the best class k*?

$$\begin{split} \operatorname{error}_{\operatorname{true}}(\widehat{h}) &= \operatorname{error}_{\operatorname{true}}(\widehat{h}_{\widehat{k}}) \\ &\leq \operatorname{error}_{\operatorname{train}}(\widehat{h}_{\widehat{k}}) + \epsilon(H_{\widehat{k}}) \\ &= \min_{k} \left\{ \operatorname{error}_{\operatorname{train}}(\widehat{h}_{k}) + \epsilon(H_{k}) \right\} \\ &= \min_{k} \left\{ \min_{h \in H_{k}} \operatorname{error}_{\operatorname{train}}(h) + \epsilon(H_{k}) \right\} \\ &\leq \min_{k} \left\{ \min_{h \in H_{k}} \operatorname{error}_{\operatorname{true}}(h) + 2\epsilon(H_{k}) \right\} \\ w.p. &\geq 1 - \delta \end{split}$$

$$\delta = \sum_{k} \delta_{k} \qquad = \underbrace{\min_{h \in H_{k^{*}}} \operatorname{error}_{\operatorname{true}}(h)}_{h \in H_{k^{*}}} + 2\epsilon(H_{k^{*}}) \end{split}$$

• What if we picked the hypothesis using ERM over the union of all spaces U_k H_k ?

$$\widehat{h} = \arg\min_{h \in H_{1,\dots,k,\dots}} \operatorname{error}_{\operatorname{train}}(h)$$

What you need to know

- PAC bounds on true error in terms of empirical/training error and complexity of hypothesis space
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case Number of hypothesis
 - Infinite case VC dimension
- Bias-Variance tradeoff in learning theory
- Empirical and Structural Risk Minimization
- Other bounds Margin based, Mistake bounds, ...
- But often bounds too loose in practice