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Summary of PAC bounds for finite
hypothesis spaces

With probability > 1-9,

1) Forallh €Hs.t. error,,,..(h) =0,
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What about continuous hypothesis
spaces?

In|H|+ In 2

2m

errortrue(h) < errortrain(h) + \

* Continuous hypothesis space:
~ [H| =
— Infinite variance???

* As with decision trees, complexity of
hypothesis space only depends on maximum
number of points that can be classified
exactly (and not necessarily its size)!
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How many points can a linear
boundary classify exactly? (1-D)
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There exists placement s.t. all labelings can be classified



How many points can a linear

boundary classify exactly? (2-D)
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There exists placement s.t. all labelings can be classified
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How many points can a linear
boundary classify exactly? (d-D)

d+1 pts

- How many parameters in linear
O Classifier in d-Dimensions?
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There exists placement s.t. all labelings can be classified



PAC bound using VC dimension

* Number of training points that can be classified

exactly is VC dimension!!!

— Measures relevant size of hypothesis space, as with

decision trees with k leaves

VC(H) (In ot 1)+|n§

errortrue(h> < errortrain(h) +8\
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Instead of In|H|
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Shattering a set of points

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

For all binary partitions of S into (S+,S-), there exists a classifier,
in H that classifies S+ as positive and S- as negative.



VC dimension

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = cc.

* You pick set of points © @
* Adversary assigns labels + _
* You find a hypothesis in H consistent with the labels @ o

If VC(H) =k, then for all k+1 points, there exists a labeling that
cannot be shattered (can’t find a hypothesis in H consistent with it)
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PAC bound using VC dimension

* Number of training points that can be classified
exactly is VC dimension!!!

— Measures relevant size of hypothesis space, as with
decision trees with k leaves

— Bound for infinite dimension hypothesis spaces:

w.p. = 1-0

m | §
errortrue(h) < errortrain(h)‘l"S\ VC(H) <In VO(H) 1> +In 0
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Examples of VC dimension

* Linear classifiers:
— VC(H) = d+1, for d features plus constant term
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Another VC dim. example - What can

we shatter?

 What’s the VC dim. of decision stumps in 2d?

-+

o ot

VC(H) = 3
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Another VC dim. example - What
can’t we shatter?

 What’s the VC dim. of decision stumps in 2d?

If VC(H) = 3, then for all placements of 4 pts, there exists a
labeling that can’t be shattered

1 in convex hull
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3 collinear of other 3 q
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Examples of VC dimension

* Linear classifiers:
— VC(H) = d+1, for d features plus constant term

* Decision stumps: VC(H)=d+1 (3if d=2)
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Another VC dim. example - What can
we shatter?

 What’s the VC dim. of axis parallel rectangles
in 2d?  sign(1- 2*1

X E rectangle)
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Another VC dim. example - What
can’t we shatter?

 What’s the VC dim. of axis parallel rectangles
in 2d?  sign(1- 2*1

X E rectangle)
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 Some placement of 4 pts can’t be shattered | 37




Another VC dim. example - What
can’t we shatter?

* What'’s the VC dim. of axis parallel rectangles
in2d?  sign(1- 2*1, ¢ ccrangte)

If VC(H) = 4, then for all placements of 5 pts, there exists a
labeling that can’t be shattered

4 collinear 2 in convex hull 1 in convex hull pentagon
o of other 3 of other 4
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Examples of VC dimension

* Linear classifiers:
— VC(H) = d+1, for d features plus constant term

* Decision stumps: VC(H) =d+1
* Axis parallel rectangles: VC(H)=2d (4if d=2)

* 1 Nearest Neighbor:  vC(H) = e
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VC dimension and size of hypothesis
space

* To be able to shatter m points, how many
hypothesis do we need?

2™ [abelings =  |H|=2™

Given |H| hypothesis can hope to shatter max
m=log,|H| points

VC(H) < log, |H|

So VC bound is tighter.
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Summary of PAC bounds

With probability > 1-9,

1) forallh&Hs.t. error,.. (h)=0, )
_ In|H|+1n3
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Using PAC bound to pick a hypothesis

e Empirical Risk Minimization (ERM)

h = arg min erroryy,in(h)
he H

P PN

€ITOT e (h) < errorirain(h) + € wp. >1—9

= min erroriyain(h) + €
heH

< min erroryue(h) + 2¢
he H

e If training error is best possible in H, then true error is
also close to best possible in H (with high probability}



Using PAC bound for model selection

e Structural Risk Minimization (SRM)

model spaces H,,H,,...,.H,,... of increasing complexity
|H,|<|H,|< ... <]H < ... OR
VC(H,) £VC(H,) £...<VC(H,) < ...

For each hypothesis space H,, we know with probability 2

1-9,, forallh&H,

error,, .(h) <error,,.(h) +€(H,) dependson |H,| or VC(H,)

As complexity k increases, error,.... goes down but &(H,)
goes up — Bias variance tradeoff
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Using PAC bound for model selection

e Structural Risk Minimization (SRM)

ERM within each model space

AN

h

= arg min erroriyain(h)

k hEH,

Choose model space (minimize upper bound on true error)

7‘6\ = arg II<1;/1>H11 {errortrain (/}\Lk:) + G(Hk’)}

Final hypothesis
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Using PAC bound for model selection

e Structural Risk Minimization (SRM)

k

Prediction
Error

empirical risk <~

— arg I]?>H11 {errortrain (Ek) + E(Hk)}

»

<——High probability
|/ Upper bound
on true risk

true risk

C(h) = ¢(H,) - large for complex models

- |

underfitting

Complexity
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Using PAC bound for model selection

* How good is the final hypothesis picked by SRM
relative to best hypothesis in the best class k*?

eITOr trye(N) = €ITOTtrye (h7)

< erToTgrain (hy) + €(Hz)

— Hlkin{eﬂ'ortrain (/}\Lk) T G(Hk)}

— . . rain h H
mén{}{relglk eITO0Ttrain (h) + €(Hp )}

< min { min errory.ue(h) + 2¢(Hy)}

k \heH, ,
‘_'_,
w.p.>1—0 Bias Variance

5 — Z O :L min errortrue(h)}—l— 2¢(Hpx) i
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Using PAC bound for model selection

 What if we picked the hypothesis using ERM over the
union of all spaces U, H, ?

h = arg min erroryy,in(h)
heHy .
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What you need to know

PAC bounds on true error in terms of empirical/training
error and complexity of hypothesis space

Complexity of the classifier depends on number of
points that can be classified exactly

— Finite case — Number of hypothesis

— Infinite case — VC dimension

Bias-Variance tradeoff in learning theory
Empirical and Structural Risk Minimization

Other bounds — Margin based, Mistake bounds, ...
But often bounds too loose in practice



