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We are inundated with dataWe are inundated with data …

Humans cannot afford to deal with (e.g., search, browse, or 
measure similarity) a huge number of text and media documents

(from images.google.cn)

We need computers to help out …
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A task:A task:
Say, we want to have a mapping …, so that 

⇒⇒

Compare similarity 
Classify contents
Cluster/group/categorize docsCluster/group/categorize docs
Distill semantics and perspectives 
.. 
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Representation:Representation:
Data: Bag of Words Representation

As for the Arabian and Palestinean voices that are against the 
current negotiations and the so-called peace process, they are not 
against peace per se, but rather for their well-founded 
predictions that Israel would NOT give an inch of the West bank 
(and most probably the same for Golan Heights) back to the

Arabian
(and most probably the same for Golan Heights) back to the 
Arabs. An 18 months of "negotiations" in Madrid, and 
Washington proved these predictions. Now many will jump on 
me saying why are you blaming israelis for no-result negotiations. 
I would say why would the Arabs stall the negotiations, what do 
they have to loose ?

negotiations
against

peace
Israel

Each document is a vector in the word space

y Israel
Arabs blaming

Ignore the order of words in a document. Only count matters!

A high-dimensional and sparse representation
– Not efficient text processing tasks, e.g., search, document 

classification, or similarity measure
– Not effective for browsing
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Subspace analysisSubspace analysis
Document

* *=

Te
rm ...

...

T Λ DTX 
( )

T

(m x k) (k x k) (k x n)(m x n)

cluster/topic/bas
is

Distributions

A priori weights Memberships
(coordinates)(coordinates)

Clustering: (0,1) matrix
LSI/NMF: “arbitrary” matrices

st but o s
(subspace)(subspace)

Topic Models: stochastic matrix
Sparse coding:  “arbitrary” sparse matrices
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An example:An example:
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Principal Component AnalysisPrincipal Component Analysis
The new variables/dimensions

Are linear combinations of the original 
ones
Are uncorrelated with one another

Orthogonal in original dimension space l V
ar

ia
bl

e 
B

PC 1PC 2

Orthogonal in original dimension space
Capture as much of the original 
variance in the data as possible
Are called Principal Components

O
rig

in
a

Orthogonal directions of 
greatest variance in data

First principal component is the direction of

Original Variable A

Projections along PC1 
discriminate the data most

First principal component is the direction of 
greatest variability (covariance) in the data
Second is the next orthogonal (uncorrelated) 
direction of greatest variabilitydiscriminate the data most 

along any one axis
So first remove all the variability along the first component, and then 
find the next direction of greatest variability

And so on …
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Computing the ComponentsComputing the Components
Projection of vector x onto an axis (dimension) u is uTxj ( )
Direction of greatest variability is that in which the average square of 
the projection is greatest:

Maximize uTXXTu 
s.t uTu = 1 

Construct Langrangian  uTXXTu – λuTu 

Vector of partial derivatives set to zero

T λ ( T λI) 0xxTu – λu = (xxT – λI) u = 0
As u ≠ 0 then u must be an eigenvector of XXT with eigenvalue  λ

λ is the principal eigenvalue of the correlation matrix C= XXT 

The eigenvalue denotes the amount of variability captured along that 
dimension
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Computing the ComponentsComputing the Components
Similarly for the next axis, etc. y
So, the new axes are the eigenvectors of the matrix of 
correlations of the original variables, which captures the 
similarities of the original variables based on how datasimilarities of the original variables based on how data 
samples project to them

Geometrically: centering followed by rotation
Linear transformation
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Eigenvalues & Eigenvectors
For symmetric matrices, eigenvectors for distinct eigenvalues 

Eigenvalues & Eigenvectors
y g g

are orthogonal

02121212121 =•⇒≠= vvvSv λλλ  and ,},{},{},{

All eigenvalues of a real symmetric matrix are real.

All eigenvalues of a positive semidefinite matrix are non-

ℜ∈⇒==− λλ TSS and 0 if IS

g p
negative

0vSvifthen,0, ≥⇒=≥ℜ∈∀ λλSwww Tn 0vSvifthen ,0, ≥⇒≥ℜ∈∀ λλSwww
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Eigen/diagonal Decomposition
Let                      be a square matrix with m linearly 

Eigen/diagonal Decomposition
q y

independent eigenvectors (a “non-defective” matrix)

Unique 
for 

Theorem: Exists an eigen decomposition

diagonal

for 
distinc
t eigen-
values

(cf. matrix diagonalization theorem)

C f f SColumns of U are eigenvectors of S

Diagonal elements of     are eigenvalues of 
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PCs Variance and Least SquaresPCs, Variance and Least-Squares
The first PC retains the greatest amount of variation in the g
sample

Th kth PC t i th kth t t f ti f th i ti iThe kth PC retains the kth greatest fraction of the variation in 
the sample

The kth largest eigenvalue of the correlation matrix C is the 
variance in the sample along the kth PC

The least-squares view: PCs are a series of linear least 
squares fits to a sample, each orthogonal to all previous ones squa es ts to a sa p e, eac o t ogo a to a p e ous o es
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The Corpora Matrix

Doc 1 Doc 2 Doc 3

The Corpora Matrix 

Doc 1 Doc 2 Doc 3 ...

Word 1 3 0 0 ...

Word 2 0 8 1 ...

Word 3 0 1 3 ...X =
Word 4 2 0 0 ...

Word 5 12 0 0 ...

... 0 0 0 ...
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Singular Value DecompositionSingular Value Decomposition

For an m× n matrix A of rank r there exists a factorization

TVUA Σ=

For an m× n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

VUA Σ=

m×m m×n V is n×n

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.g g

λσ

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.

ii λσ =

( )rdiag σσ ...1=Σ Singular values.
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SVD and PCASVD and PCA
The first root is called the prinicipal eigenvalue which has an 
associated orthonormal (uTu = 1) eigenvector u 

Subsequent roots are ordered such that λ1> λ2  >… > λM  with 
rank(D) non-zero values.rank(D) non zero values.

Eigenvectors form an orthonormal basis i.e. ui
Tuj = δij 

The eigenvalue decomposition of XXT = UΣUTg p

where U = [u1, u2, …, uM] and Σ = diag[λ 1, λ 2, …, λ M] 

Similarly the eigenvalue decomposition of XTX = VΣVT

The SVD is closely related to the above X=U Σ1/2 VT

The left eigenvectors U, right eigenvectors V, 

singular values = square root of eigenvalues.
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How Many PCs?How Many PCs?
For n original dimensions, sample covariance matrix is nxn, and has 
up to n eigenvectors. So n PCs.
Where does dimensionality reduction come from?
Can ignore the components of lesser significance. 

15

20

25

(%
)

g p g

5

10

15

V
ar

ia
nc

e 

0
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t 
lose much

n dimensions in original data 
calculate n eigenvectors and eigenvalues
choose only the first p eigenvectors, based on their eigenvalues
final data set has only p dimensions
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Within 40Within .40
threshold

K is the number of singular values used
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Summary: 
Latent Semantic Indexing

Document

Latent Semantic Indexing(Deerwester et al., 1990)

* *=

Te
rm ...

T Λ DTX

T

T 
(m x k)

Λ
(k x k)

DT

(k x n)
X 

(m x n)

∑
K

Tdw
rr λ∑

=

=
k

kkk Tdw
1

λ

LSI does not define a properly normalized probability distribution of p p y p y
observed and latent entities

Does not support probabilistic reasoning under uncertainty and data fusion
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Connecting Probability Models to 
Data

(G ti M d l)

Data

P(Data | Parameters)
(Generative Model)

Probabilistic Real WorldProbabilistic
Model

Real World
Data

P(Parameters | Data)
(Inference)
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Latent Semantic Structure in GMLatent Semantic Structure in GM

Distribution over words
Latent Structure ∑=

l

l),()( ww PPl

Distribution over words

Inferring latent structure

Words w )w(
)()|w()w|(

P
PPP ll

l =

Inferring latent structure

)(
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How to Model Semantics?How to Model Semantics?
Q: What is it about?
A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
f St ti ti l M hi T l ti0 6 0 3 0 1 AdMixing 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
f bit t ith t t tiS

MT                    Syntax              Learning

0.6                          0.3                   0.1   g
Proportion

from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 
Phrase based model achieves a relative 
Improvement of 7 5% over Pharaoh

Source
Target
SMT

Alignment
S

Parse
Tree
Noun

Phrase

likelihood
EM

Hidden
Parameters pi

cs
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Score
BLEU Grammar

CFG
Estimation

argMax
To

p

Unigram over vocabulary
Topic Models
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Why this is Useful?Why this is Useful?
Q: What is it about?
A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
f St ti ti l M hi T l ti

AdMixing 0 6 0 3 0 1 for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
f bit t ith t t ti

MT                    Syntax              Learning

g
Proportion

0.6                          0.3                   0.1   

from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 
Phrase based model achieves a relative 
Improvement of 7 5% over Pharaoh

Q: give me similar document?
Structured way of browsing the collection

Other tasks Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Other tasks
Dimensionality reduction 

TF-IDF vs. topic mixing proportion

Cl ifi ti l t i dClassification, clustering, and more …
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Words in ContextsWords in Contexts

“It i shot ”“It was a nice shot. ”
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Words in Contexts (con'd)Words in Contexts (con d)
the opposition Labor Party fared even worse,  with a pp y

predicted 35 seats,  seven less than last election.
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A possible generative process of 
a documenta  document

DOCUMENT 1: money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 money1

stream2 bank1 money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 bank1

.8

TOPIC 1

DOCUMENT 2: river2 stream2 bank2 stream2 bank2

money1 loan1 river2 stream2 loan1 bank2 river2 bank2

money1 stream2

.3

.2 money1 loan1 river2 stream2 loan1 bank2 river2 bank2

bank1 stream2 river2 loan1 bank2 stream2 bank2 money1

loan1 river2 stream2 bank2 stream2 bank2 money1 river2

stream2 loan1 bank2 river2 bank2 money1 bank1 stream2

river2 bank2 stream2 bank2 money1

.2

.7

TOPIC 2

Mixture 
admixing weight 

vector θ Bayesian approach: use priors   
Components

(distributions over 
elements)

vector θ
(represents all 
components’ 

contributions)

y pp p
Admixture weights ~ Dirichlet( α ) 
Mixture components ~ Dirichlet( Γ ) 
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Probabilistic LSIProbabilistic LSI Hoffman (1999)

β
k

θ

wnznd

NN
M
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Probabilistic LSIProbabilistic LSI
A "generative" modelg
Models each word in a document as a sample from a mixture 
model.
E h d i t d f i l t i diff t d iEach word is generated from a single topic, different words in 
the document may be generated from different topics.
A topic is characterized by a distribution over words.p y
Each document is represented as a list of admixing 
proportions for the components (i.e. topic vector θ ).

d

θ

β
k

d

θθ

β
k

β
k

wnznd

N
M

wnznd

N
M
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Latent Dirichlet Allocation
Bl i N d J d (2003)Blei, Ng and Jordan (2003)

Essentially a Bayesian pLSI:

K

η βk

y y p

wnznθ

N

α

N
M
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LDALDA
Generative model
Models each word in a document as a sample from a mixture 
model.
E h d i t d f i l t i diff t d iEach word is generated from a single topic, different words in 
the document may be generated from different topics.
A topic is characterized by a distribution over words.p y
Each document is represented as a list of admixing 
proportions for the components (i.e. topic vector).
The topic vectors and the word rates each follows a Dirichlet 
prior --- essentially a Bayesian pLSI 

K

η βk
K

η βk

wnznθ

N
M

α wnznθ

N
M

α
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Topic Models = Mixed 
Membership Models = AdmixtureMembership Models = Admixture

Generating a documentg
Prior

( )
  each wordFor  

prior  thefrom  
n

Drawθ−

θ 
( )

{ } ( )
    

 
 from  ,| Draw -

 from  Draw-

:1 nzknn

n

lmultinomiazw
lmultinomiaz

ββ
θ

z 

w β  
NK Nd

N 

K 

Which prior to use?
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Choices of PriorsChoices of Priors
Dirichlet (LDA) (Blei et al. 2003)( ) ( )

Conjugate prior means efficient inference
Can only capture variations in each topic’s 
intensity independently

Logistic Normal (CTM=LoNTAM) 
(Blei & Lafferty 2005, Ahmed & ( y ,
Xing 2006)

Capture the intuition that some topics are highly 
correlated and can rise up in intensity together
N t j t i i li h d i fNot a conjugate prior implies hard inference

Nested CRP (Blei et al 2005)
Defines hierarchy on topics
… 
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Generative Semantic of LoNTAMGenerative Semantic of LoNTAM
Generating a document µ Σ 

( ) from  Draw-
  each wordFor  

prior  thefrom  

n lmultinomiaz
n

Draw

θ

θ−

g

γ

µ

( )
{ } ( )

    

 from  ,| Draw - :1 nzknn

n

lmultinomiazw ββ
z β  

K 

( )
( ) 0              ,~

,~

1 =Σ
Σ

− KK

K

N
LN

γµγ
µθ

w 
Nd

N

1logexp

1

1

1

⎞⎛
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
+−= ∑

−

=

K

K

i
ii

ieγγθ

N 

( )     1log
1

1
⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

−

=

K

i

ieC γγ - Log Partition Function
- Normalization Constant
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Outcomes from a topic modelOutcomes from a topic model 
The “topics” β in a corpus:

There is no name for each “topic”, you need to name it!
There is no objective measure of good/bad
The shown topics are the “good” ones, there are many many trivial ones, meaningless ones, 
redundant ones, … you need to manually prune the results
How many topics? …   
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Outcomes from a topic modelOutcomes from a topic model 
The “topic vector” θ of each doc

Create an embedding of docs in a “topic space”
Their no ground truth of θ to measure quality of inference 
But on θ it is possible to define an “objective” measure of goodness, such as classification 
error, retrieval of similar docs, clustering, etc., of documents
But there is no consensus on whether these tasks bear the true value of topic models … 
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Outcomes from a topic model
The per-word topic indicator z:

Outcomes from a topic model 
p p

Not very useful under the bag of word representation, 
because of loss of ordering
But it is possible to define simple probabilistic linguisticBut it is possible to define simple probabilistic linguistic 
constraints (e.g, bi-grams) over z and get potentially 
interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]

35© Eric Xing @ CMU, 2006-2012



Outcomes from a topic modelOutcomes from a topic model 
The topic graph S (when using CTM):p g p ( g )

Kind of interesting for understanding/visualizing large corpora 
[David Blei, MLSS09]
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Outcomes from a topic modelOutcomes from a topic model
Topic change trendsp g

[David Blei, MLSS09]

37© Eric Xing @ CMU, 2006-2012



The Big PictureThe Big Picture

Unstructured Collection Structured Topic NetworkUnstructured Collection Structured Topic Network

Topic 
Discovery

w1 T1

Dimensionality  
Reduction

w2

wn

x
x

x
x Tk T2

x x x
x

Reduction
Word Simplex Topic Space 

(e.g, a Simplex)
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Computation on LDAComputation on LDA

InferenceInference
Given a Document D

Posterior: P(Θ | µ,Σ, β ,D)
E l ti P(D| Σ β )

θn
Evaluation: P(D| µ,Σ, β )

L i

βi

Learning
Given a collection of documents {Di}

Parameter estimation

( )( )∑ Σ
Σ

βµ
β

,,logmaxarg
)(

iDP
Σ βµ ),,(
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Exact Bayesian inference on LDA 
is intractable

A possible query:

is intractable
p q y

?)|(
?)|(

, =
=

Dzp
Dp

mn

nπθn

Close form solution?
)(

),()|(
Dp

DpDp n
n

⎞⎛ ⎞⎛

=
ππ

,

θnθn

)(

)|()|()|()|(
}{

,,
,

Dp

ddGppzpxp
mn

n
z

i
n

n
m

nmnzmn∑ ∫ ∏ ∏ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

φπφαππφ θn θ-nθn ββ

∑ ∏ ∏∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

}{
,,

,

)|()|()|()|()(
mn

n
z

N
n

n
m

nmnzmn dddGppzpxpDp φππφαππφ LL 1θnθn θ θβ ββ

Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors
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Approximate Inference

Variational Inference

Approximate Inference

Variational Inference

Mean field approximation (Blei et al)
E t ti ti (Mi k t l)Expectation propagation (Minka et al)
Variational 2nd-order Taylor approximation (Ahmed and Xing)

Markov Chain Monte Carlo

Gibbs sampling (Griffiths et al)
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Collapsed Gibbs sampling
(T G iffith & M k St )(Tom Griffiths & Mark Steyvers)

Collapsed Gibbs samplingp p g
Integrate out θ

F i bl
θn

For variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

z i = z1
(t+1) z2

(t+1) zi 1
(t+1) zi 1

(t) z (t)

βi
z-i = z1

( ), z2
( ),…, zi-1

( ), zi+1
( ), …, zn

( )
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Gibbs samplingGibbs sampling 

Need full conditional distributions for variables
Since we only sample z we need θn

βi

G

G

number of times word w assigned to topic j

number of times topic j used in document d
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Gibbs samplingp g

iteration
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Gibbs samplingp g

iteration
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Gibbs samplingp g

iteration
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Gibbs samplingp g

iteration
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Gibbs samplingp g

iteration
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Gibbs samplingp g

iteration
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Gibbs samplingp g

iteration
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Gibbs samplingp g
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Learning a TMLearning a TM
Maximum likelihood estimation:

Need statistics on topic-specific word assignment (due to z), topic 
vector distribution (due to θ), etc.

E.g,, this is the formula for topic k: 

These are hidden variables, therefore need an EM algorithm (also 
known as data augmentation, or DA, in Monte Carlo paradigm)

This is a “reduce” step in parallel implementation
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ConclusionConclusion
GM-based topic models are cool

Flexible 
Modular
Interactive

There are many ways of implementing topic models
unsupervised
supervisedp

Efficient Inference/learning algorithms
GMF, with Laplace approx. for non-conjugate dist.
MCMCMCMC

Many applications
…
Word sense disambiguationWord-sense disambiguation
Image understanding
Network inference
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