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What is Learning?What is Learning?

Learning takes place as a result of interactionLearning takes place as a result of interaction 
between an agent and the world, the idea 
behind learning is thatg

Percepts received by an agent should be used not 
only for understanding/interpreting/prediction, as in 
the machine learning tasks we have addressed so far, 
but also for acting and further more for improving thebut also for acting, and further more for improving the 
agent’s ability to behave optimally in the future to 
achieve the goal.
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Types of LearningTypes of Learning 
Supervised Learningp g

A situation in which sample (input, output) pairs of the function to be learned can 
be perceived or are given
You can think it as if there is a kind teacher

- Training data: (X,Y). (features, label)
- Predict Y, minimizing some loss.
- Regression, Classification.

Unsupervised Learning

- Training data: X. (features only)
- Find “similar” points in high-dim X-space.
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- Clustering.
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Example of Supervised LearningExample of Supervised Learning 
Predict the price of a stock in 6 months from now, based on p
economic data. (Regression)
Predict whether a patient, hospitalized due to a heart attack, 
will have a second heart attack The prediction is to be basedwill have a second heart attack. The prediction is to be based 
on demographic, diet and clinical measurements for that 
patient. (Logistic Regression)
Identify the numbers in a handwritten ZIP code, from a 
digitized image (pixels). (Classification)
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Example of Unsupervised LearningExample of Unsupervised Learning

From the DNA micro-array y
data, determine which 
genes are most “similar” 
in terms of their 
expression profiles. 
(Clustering)
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Types of Learning (Cont’d)Types of Learning (Cont d) 

Reinforcement LearningReinforcement Learning
in the case of the agent acts on its environment, it receives some 
evaluation of its action (reinforcement), but is not told of which 
action is the correct one to achieve its goalaction is the correct one to achieve its goal

- Training data: (S, A, R). (State-Action-Reward)g ( , , ) ( )
- Develop an optimal policy (sequence of  
decision rules) for the learner so as to  
maximize its long-term reward.    

- Robotics, Board game playing programs.
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RL is learning from interactionRL is learning from interaction
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Examples of Reinforcement LearningExamples of Reinforcement Learning 

How should a robot behave so as 
to optimize its “performance”? (Robotics)

How to automate the motion of 
h li t ? (C t l Th )a helicopter? (Control Theory)

How to make a good chess-playing 
program? (Artificial Intelligence)
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p g ( g )
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Robot in a roomRobot in a room

what’s the strategy to achieve max reward?
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gy
what if the actions were NOT deterministic?
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Pole BalancingPole Balancing
Task: 

Move car left/right to keep the pole balanced

State representation
Position and velocity of the carPosition and velocity of the car
Angle and angular velocity of the pole
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History of Reinforcement 
LearningLearning

Roots in the psychology of animal learning (Thorndike,1911).p y gy g ( )

Another independent thread was the problem of optimal 
t l d it l ti i d i icontrol, and its solution using dynamic programming

(Bellman, 1957).

Idea of temporal difference learning (on-line method), e.g., 
playing board games (Samuel, 1959).

A major breakthrough was the discovery of Q-learning 
(Watkins, 1989).
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( at s, 989)
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What is special about RL?What is special about RL?
RL is learning how to map states to actions, so as to g p
maximize a numerical reward over time.

U lik th f f l i it i lti t d i iUnlike other forms of learning, it is a multistage decision-
making process (often Markovian).

An RL agent must learn by trial-and-error. (Not entirely 
supervised, but interactive)

Actions may affect not only the immediate reward but also 
subsequent rewards (Delayed effect). 
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subseque t e a ds ( e ayed e ect)
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Elements of RLElements of RL
A policyp y

- A map from state space to action space.
- May be stochastic.

A reward function
- It maps each state (or, state-action pair) to

l b ll d da real number, called reward. 
A value function

- Value of a state (or state-action pair) is the- Value of a state (or, state-action pair) is the
total expected reward, starting from that 
state (or, state-action pair).
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PolicyPolicy
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Reward for each step 2Reward for each step -2
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Reward for each step: 0 1Reward for each step: -0.1
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Reward for each step: 0 04Reward for each step: -0.04
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The Precise GoalThe Precise Goal
To find a policy that maximizes the Value function.p y

transitions and rewards usually not available

Th diff t h t hi thi l i iThere are different approaches to achieve this goal in various 
situations.

Value iteration and Policy iteration are two more classic 
approaches to this problem. But essentially both are dynamic 
programmingprogramming.

Q-learning is a more recent approaches to this problem. 
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g pp p
Essentially it is a temporal-difference method.
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Markov Decision ProcessesMarkov Decision Processes
A Markov decision process is a tuple                             where:p p
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The dynamics of an MDPThe dynamics of an MDP
We start in some state s0, and get to choose some action a0 ∈0 g 0
A
As a result of our choice, the state of the MDP randomly 
transitions to some successor state s drawn according to s ~transitions to some successor state s1, drawn according to s1~
Ps0a0
Then, we get to pick another action a1

…
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The dynamics of an MDP, 
(Cont’d)(Cont d)

Upon visiting the sequence of states s0, s1, …, with actions a0, a1, …, 
our total payoff is given by

Or, when we are writing rewards as a function of the states only, this 
becomes

For most of our development, we will use the simpler state-rewards R(s), though 
the generalization to state-action rewards R(s; a) offers no special diffculties.

Our goal in reinforcement learning is to choose actions over 
time so as to maximize the expected value of the total payoff:
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PolicyPolicy
A policy is any function                     mapping from the states p y y pp g
to the actions.

W th t ti li if hWe say that we are executing some policy  if, whenever we 
are in state s, we take action a = π(s).

We also define the value function for a policy π according to

Vπ ( ) is simply the expected sum of discounted rewards upon starting in state s

Eric Xing

Vπ (s) is simply the expected sum of discounted rewards upon starting in state s, 
and taking actions according to π.
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Value FunctionValue Function
Given a fixed policy π, its value function Vπ satisfies the p y
Bellman equations:

Immediate reward expected sum ofImmediate reward p
future discounted rewards

Bellman's equations can be used to efficiently solve for Vπ (see later)
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The Grid world
M = 0.8 in direction you want to go

0 2 in perpendicular 0.1 left

The Grid world

0.2 in perpendicular 0.1 right
Policy: mapping from states to actions
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utilities of states:

3

2

+1

-1

3

2

+1

-1

0.812

0.762

0.868 0.912

0.660

An optimal 
policy for 
the 
stochastic

1
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0.7051
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0.655 0.611 0.388

stochastic 
environmen
t:

Environment
Observable (accessible): percept identifies the state
Partially observable

Markov property: Transition probabilities depend on state only, not on the path to the 
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state.
Markov decision problem (MDP).
Partially observable MDP (POMDP): percepts does not have enough info to identify 
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Optimal value functionOptimal value function
We define the optimal value function according top g

(1)

In other words, this is the best possible expected sum of discounted rewards that 
can be attained using any policy

Th i i f B ll ' ti f th ti lThere is a version of Bellman's equations for the optimal 
value function:

Why? 

(2)
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Optimal policyOptimal policy 
We also define a policy :                        as follows:p y

(3)

Fact: 

Policy π* has the interesting property that it is the optimal policy for all 
t tstates s. 

It is not the case that if we were starting in some state s then there'd be some 
optimal policy for that state, and if we were starting in some other state s0 then 
there'd be some other policy that's optimal policy for s0. 
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p y p p y 0

The same policy π* attains the maximum above for all states s. This means 
that we can use the same policy  no matter what the initial state of our MDP is.
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The Basic Setting for LearningThe Basic Setting for Learning

Training data: n finite horizon trajectories, of theTraining data: n finite horizon trajectories, of the 
form }.,,,,...,,,{ 1000 +TTTT srasras

Deterministic or stochastic policy:  A sequence of 
decision rules }.,...,,{ 10 Tπππ

Each π maps from the observable history (states 
and actions) to the action space at that time point.
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Algorithm 1: Value iterationAlgorithm 1: Value iteration
Consider only MDPs with finite state and action spacesy p

The value iteration algorithm:The value iteration algorithm:

synchronous update
asynchronous updates

Eric Xing

It can be shown that value iteration will cause V to converge to V *. Having 
found V* , we can then use Equation (3) to find the optimal policy.
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Algorithm 2: Policy iterationAlgorithm 2: Policy iteration
The policy iteration algorithm:p y g

The inner-loop repeatedly computes the value function for the current policy, and 
then updates the policy using the current value function.
Greedy update

Eric Xing

y p
After at most a finite number of iterations of this algorithm, V will converge to V* , 
and π will converge to π*.
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Convergence
The utility values for selected states at each iteration step in the 

Convergence

application of VALUE-ITERATION to the 4x3 world in our example
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Thrm:  As t ∞, value iteration converges to exact U even if updates 
are done asynchronously & i is picked randomly at every step.
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ConvergenceConvergence

Eric Xing

When to stop value iteration?
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Q learning
Define Q-value function

Q learning

Q-value function updating rule
See subsequent slides

Key idea of TD-Q learning
Combined with temporal difference approach

Rule to chose the action to take
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Algorithm 3: Q learningAlgorithm 3: Q learning
For each pair (s, a), initialize Q(s,a)p ( , ) ( , )
Observe the current state s
Loop forever
{

Select an action a (optionally with ε-exploration) and execute it

Receive immediate reward r and observe the new state s’
Update Q(s,a)

s=s’

Eric Xing

}
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ExplorationExploration
Tradeoff between exploitation (control) and exploration p ( ) p
(identification) 

E t d d tiExtremes: greedy vs. random acting
(n-armed bandit models)

Q-learning converges to optimal Q-values if
Every state is visited infinitely often (due to exploration),
The action selection becomes greedy as time approaches infinity, and
The learning rate a is decreased fast enough but not too fast  (as we discussed in 
TD learning)
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TD learning)
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A Success StoryA Success Story
TD Gammon (Tesauro, G., 1992)( )

- A Backgammon playing program.
- Application of temporal difference learning.
- The basic learner is a neural network.
- It trained itself to the world class level by  playing against 

itself and learning from the outcome So smart!!itself and learning from the outcome. So smart!!
- More information: 

http://www.research.ibm.com/massive/tdl.html
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SummarySummary
Both value iteration and policy iteration are standard p y
algorithms for solving MDPs, and there isn't currently 
universal agreement over which algorithm is better. 
For small MDPs value iteration is often very fast andFor small MDPs, value iteration is often very fast and 
converges with very few iterations. However, for MDPs with 
large state spaces, solving for V explicitly would involve 
solving a large system of linear equations and could besolving a large system of linear equations, and could be 
difficult. 
In these problems, policy iteration may be preferred. In 
practice value iteration seems to be used more often than 
policy iteration.
Q-learning is model-free and explore the temporal difference
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Q learning is model free, and explore the temporal difference
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Types of LearningTypes of Learning 
Supervised Learning

- Training data: (X,Y). (features, label)
- Predict Y, minimizing some loss.
- Regression, Classification.

Unsupervised Learning
- Training data: X. (features only)
- Find “similar” points in high-dim X-space.p g p
- Clustering.

Reinforcement Learning
- Training data: (S, A, R). (State-Action-Reward)
- Develop an optimal policy (sequence of  

decision rules) for the learner so as to  
maximize its long-term reward
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maximize its long term reward.    
- Robotics, Board game playing programs
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