Machine Learning

10-701/15-781, Fall 2012
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e How was your hw? Save at least 10 hours for it.

e About project

e About team formation
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Generative vs. Discriminative sece
classifiers oo
e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)
e Generative:
e Modeling the joint distribution
of all data
e Discriminative: S i
e Modeling only points . \
at the boundar J’
BEERVARY
. . [ X X J
Learning Generative and i
Discriminative Classifiers oo

e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes):
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers (e.qg., logistic regression)
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!l
e Estimate parameters of P(Y|X) directly from training data
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Suppose you know the following

e Class-specific Dist.: P(X|Y)
i p(X|Y.=1)
= Py(X; iy, Zy) Bayes classifier:

o ) Abnormal P(Y‘X) — P(X|Y)P(Y)
P(X)
p(X 1Y =2)
=P, (X 1z, Z,)
e Class prior (i.e., "weight"): P(Y)
e This is a generative model of the data!
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Optimal classification :

e Theorem: Bayes classifier is optimal!

e Thatis

errorirue(RBayes)) < errorirue(h), Vh(x)

e How to learn a Bayes classifier?
e Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k

© Eric Xing @ CMU, 2006-2012 6




[ X X J
0000
[ X L
: . eso
Learning Bayes Classifier &
e Training data (discrete case):
X Y
\/ N\
Sky Temp Humid Wind Water Forecst EnjoySpt
[Sunny Warm Normal Strong Warm  Same Yes |
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes
e Learning = estimating P(X|Y), and P(Y)
o Classification = using Bayes rule to calculate P(Y | X..,)
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Parameter learning from iid data: | 3s2:
The Maximum Likelihood Est. o

e Goal: estimate distribution parameters 8 from a dataset of N
independent, identically distributed (iid), fully observed,
training cases

D={x; ..., X}

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(6) as the likelihood of the data:

L() = P(x X5,..., Xy 6)
=P(X;0)P(X,;0),...,P(xy;6)
=[1,.P(x;6)

3. pick the setting of parameters most likely to have generated the data we saw:

0" =argmaxL(0) =arg max log L(6)
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How hard is it to learn the optimal | s32:
00
HY o0
classifier? :
I
e How do we represent these? How many parameters?
o Prior, P(Y): WaN
Suppose Yis Composed of k classes Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm  Same Yes
Sunny Warm High Strong Warm  Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm  High  Strong Cool Change Yes
e Likelihood, P(X]Y):
Suppose X is composed of n binary features
e Complex model — High variance with limited data!!!
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Gaussian Discriminative Analysis |

e learning f: X - Y, where

e Xis a vector of real-valued features, X,= < X.1,...X," >

e Yis an indicator vector

e What does that imply about the form of P(Y|X)?

e The joint probability of a datum and its label is:
Py Yy =1 ,0) = p(yp =1)x P(X, | Yy =1, 4, %)

1 - ~ N
=7 WGXP{'%(M - i) (X, 'ﬂk)}

e Given a datum x,, we predict its label using the conditional probability of the label
given the datum:

1 - . .
I, WGXP{'%(XH - 1) (X, 'ﬂk)}

POy =11%,,4,7) = :
zﬂ-k' WeXP{'%(Xn -14) 27X, _ﬁk')}
=
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Conditional Independence

e Xis conditionally independent of Y given Z, if the probability
distribution governing X is independent of the value of Y, given
the value of Z

Vi, 7, k)P(X =ilY =j,Z=k) = P(X =i|Z = k)

Which we often write

P(X|Y,2)=P(X|2)

e eg,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
e Equivalent to:

P(X,Y | Z)=P(X | 2)P(Y | Z)
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The Naive Bayes assumption :
e Naive Bayes assumption:
e Features are conditionally independent given class:
P(X1,X2lY) = P(X1|X2,Y)P(X2|Y)
= P(X1|]Y)P(X2|Y)
e More generally:
P(X1.X"Y) =T P(X"|Y)
/)
Cy o>
e How many parameters now? ////\//xg\\\\
e Suppose X is composed of m binary features (3‘{1\3 (}“’%} (/}@5 (\/}ZD
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The Naive Bayes Classifier

e Given:
e Prior P(Y)
e m conditionally independent features X given the class Y
e For each X, we have likelihood P(X,|Y)

e Decision rule:

v'=hyp(x) = argmax P(y)P(z',....2™|y)

= argmax P(y) H P(z'y)

e If assumption holds, NB is optimal classifier!
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The A Gaussian Discriminative
Naive Bayes Classifier -

e \When X is multivariate-Gaussian vector:

e The joint probability of a datum and it label is:

-t

P(Xy, Yo =11, Z) = Py =D x p(X, | Yy =1, 2. %)

1 . _ -
=7 WEXF’{‘%(M - i) E(x, 'Nk)}

e The naive Bayes simplification
(X, Yo =1l 4,0) = plys =Dx[ [ p(x3 lys =L pl,0) %
i
LY @ @ @
=mn]] ! exp]- 1 Xo~
‘ i mo—kj ‘ool
o More generally:  p(X,, Y, |7,7) = p(y, | 7)< [ [ p(x} | ,.7)

j=1

Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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The predictive distribution E
I
e Understanding the predictive distribution
_ K=1,x, | i,2, 7 7N, | e, 2
p(y:=1|Xn,,u,2,ﬂ')=p(y JIu ): k ( |:uk k) *
p(X, [ 4,%) Zkvﬂk'N(Xn’l M Zy)
e Under naive Bayes assumption:
7 exp{—zj[;[xd;ﬂkjj ~log o —C]}
P(Yy =1l %, i, 2, 7) = J_k ~ **
> EXP{_ZI{;(W} —log ;. —C}}
e Fortwo class (i.e., K=2), and when the two classes haves the same
variance, ** turns out to be a logistic function
p(yr11 :1|Xn) = ! !
1+
_ 1
1+
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The decision boundary °

e The predictive distribution

1 1

M _ = -0"x,
1+exp{—2€jxn’ —00} lre

j=1

p(ys =1Ix,) =

e The Bayes decision rule:

p(y? =1|x,) e’ '

1+e7 )

e For multiple class (i.e., K>2), * correspond to a softmax function

"9kT Xn

e

—_
Z e—Hj Xn

j
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Summary:
The Naive Bayes Algorithm

e Train Naive Bayes (examples)
o for each” value y,
o estimate mx = P(Y =yy)
o for each* value x; of each attribute X;

e estimate 0:jn = P(Xi — -J:.;_J-|Y =)

o Classify (X ew)
Y™ — argmax P(Y = y;.) H P(X' = x|V = yp)
i

e
new
Yt — arg max g H Oijk

13
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Generative vs. Discriminative
Classifiers

e Goal: Wishtolearn f: X - Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes): T
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal C X, D

e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers: TS
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data! 0

e Estimate parameters of P(Y|X) directly from training data
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Recall the predictive law under i
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[
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Recall the NB predictive distribution | ¢
e Understanding the predictive distribution
k _ —
p(y:=1|xn,ﬁ,2,ﬂ)= p(yn_l’xn_llu’z!ﬂ)z ”kN(Xn’lluk’Zk) *
p(Xn |/u'2) Zkvﬂ.k'N(xn’I/uk"Zk')
e Under naive Bayes assumption:
7 exp{zj[;[x'fo_j‘lkj) Iogak"c]}
p(Y: =1]%,, .5, 7) = - B ) e
1% —p i
Zk'”k'exp{Zj[z(gkj) —logoy C}}
e Fortwo class (i.e., K=2), and when the two classes haves the same
variance, ** turns out to be a logistic function
p(yr11:1|Xn) = [ j‘” = !
1+—ﬂzexp! Z,[z prer CM 2 2 (1-7,
1 oy Leepf X b 2 () + 2 Ul T Ll tog 2|
S l4e
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Logistic regression (sigmoid i
classifier) o2

|
e The condition distribution: a Bernoulli 1 e
Py %)= (X)) (L= ) e
where x is a logistic function ! /
1 ../’
u(X)=———=p(y=1[Xx) o
1+e '
07
e In this case, learning p(y|x) amounts to learning ...?
e What is the difference to NB?
[ X X ]
0000
s
The logistic function -

)

o

9(

T 14ez /
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Training Logistic Regression: 4
::
MCLE .
|
e Estimate parameters 6=<¢,, 6,, ... > to maximize the
conditional likelihood of training data
e Trainingdata D= {(z1,1),....(zn.yn)}
N
e Data likelihood = HP(-?:-,:-_m;ﬁ)
i=1 .
e Data conditional likelihood = | [ P(yilx:;6)
=1
6 = arg max In H P(y;|zi;0)
© Eric Xing @ CMU, 2006-2012 23
. .-, . [ X X ]
Expressing Conditional Log i
. . b
Likelihood .
1(6) = lnHP(ydmz—; 0) = Zln P(y;|x:; 0)
i i
- S
e Recall the logistic function: p = 1
and conditional likelihood: P(y|z) = pu(x)¥(1 — p(x))*~
(8 = Zln Plyilzi0) = Z.r;,; Inw(a;) + (1 — i) In(1 — plx;))
= yi In u(z:) n e
— ZJ,I T (e 1 #(=)
= Z yif Tz — 072 + In(1 + (.=_”T"") !
= S (i — 10Tz + (1 + e =)
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Maximizing Conditional Log
Likelihood o2

e The objective:

1(0)

lnHP(?}d-’l?i;g)

= > (yi—1)f'z; +In(1 + =0 eyt

k3

e Good news: () is concave function of &

e Bad news: no closed-form solution to maximize 1(6)

© Eric Xing @ CMU, 2006-2012 25

Gradient Ascent

10y = WJ]P(yilwi:0)

Z(y; — 18"z +In(1 + (E_GT"")_1= Z(y,— — 10" +Inp(67 ;)

e Property of sigmoid function:

1 dp

— =l —p)

H= 1+et dt

e The gradient:

ale)
00;
The gradient ascent algorithm iterate until change < ¢
Foralli,  0;—0;+nY (yi— P(y; =1|z:;0))a]
repeat ‘

© Eric Xing @ CMU, 2006-2012
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The Newton’s method

e Finding a zero of a function

10
= e

© Eric Xing @ CMU, 2006-2012
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The Newton’s method (con’d)

e To maximize the conditional likelihood I(&):

0o) = Z{yi ~1)0T2; + In(1 + (:_”T‘"")

since | is convex, we need to find & where I’(¢")=0 !

e So we can perform the following iteration:

I'(60")

t+1 . pt
0 =0 + ln(é}t)

© Eric Xing @ CMU, 2006-2012
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The Newton-Raphson method '
I
e In LR the #is vector-valued, thus we need the following
generalization:
ot = 0t + H-'V el (6"
e V is the gradient operator over the function
e His known as the Hessian of the function
[ X X ]
[ X X X
s
The Newton-Raphson method -

e In LR the @is vector-valued, thus we need the following
generalization:

o+ = 0! + H™'V (0"

e V is the gradient operator over the function
Vol(0) = Z(y,- —ui)r; =X (y — u)
e His known as the Hessian of the function
H = VyVl(0) = Z wi(1 — u)azl = XTRX

where R;.;- = u;(1 — u;)
e This is also known as Iterative reweighed least squares
(IRLS)
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Iterative reweighed least squares
(IRLS) o

e Recall in the least square est. in linear regression, we have:
9= (XTX)"'XTy

which can also derived from Newton-Raphson

e Now for logistic regression:
o'tt = 0"+ H 'Vl (6"
= 0 - (XTRX)"'XT(u—-y)
= (XTRX) YXTRX#' — XT(u-y)}
= (XTRX) 'X"Rz
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IRLS

e Recall in the least square est. in linear regression, we have:
h=(XTX)"'XTy

which can also derived from Newton-Raphson

e Now for logistic regression:
't = (XTRX) 'X"Rz
where z=X6#'-R Y(u-y)

and  Rj; = u;(1 — u;)

© Eric Xing @ CMU, 2006-2012
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Convergence curves
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alt.atheism
VS.
comp.graphics

comp.windows.x
VS.
rec.motorcycles

Legend: - X-axis: Iteration #; Y-axis: error
- In each figure, red for IRLS and blue for gradient descent
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Logistic regression: practical seoe
- oee
ISSues o

¢ NR (IRLS) takes O(N+d?®) per iteration, where /= number of
training cases and &= dimension of input x, but converge in
fewer iterations

e Quasi-Newton methods, that approximate the Hessian, work
faster.

e Conjugate gradient takes O(Nd) per iteration, and usually
works best in practice.

e Stochastic gradient descent can also be used if Nis large c.f.
perceptron rule:
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Case Study: Text classification

e Classify e-mails

e Y ={Spam,NotSpam}
e Classify news articles

e Y ={what is the topic of the article?}
e Classify webpages

e Y = {Student, professor, project, ...}

e What about the features X? 4“ ' J\\\\,
e The text! ‘

Y

: - esee

Features X are entire document — X! sece
for ith word in article -

B All At The Company
TOTAL | Glatal Asthvities aardvark 0
Corporate Structure
TOTAL'S Stey about 2
Ugatioam Strategy
Downatresm Staategy
Chanca Sne all 2
TOTAL Fousastion
Homapagn —_—| Africa 1
all about the apple 0
company .
anxious 0
and dumbukon
m ot than 100
At TOTAL, we draw our greatest strength from our gas 1
fast-growing ol and gas reserves, Our stralegic emphasis
on natural gag provides a strong posiion in a rapedhy
expunding markst
) oil 1
Cr expandmg refnng and marketng operatons m Ana
and the Mediterranean Rin complement already solid
positons m Eurepe, Afnea, and the 15,
Chur growing specialty chemicals secter adds balance and Zaire 0

prafil o the core energy busmiess
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Bag of words model

I
e Typical additional assumption — Position in document

doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)
e “Bag of words” model — order of words on the page ignored
e Sounds really silly, but often works very well!

LengthDoc _ LengthV ol
P) I PGy or PG ][ PGy
=1 k=1

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.

© Eric Xing @ CMU, 2006-2012 37
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Bag of words model :
e Typical additional assumption — Position in document
doesn’t matter: P(X'=x/|Y=y) = P(Xk=x|Y=y)
e “Bag of words” model — order of words on the page ignored
e Sounds really silly, but often works very well!
LengthDoc _ LengthV ol
Ply) JI PGy o Pl ][ PGy
=1 k=1

in is lecture lecture next over person remember room
sitting the the the to to up wake when you

© Eric Xing @ CMU, 2006-2012 38
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NB with Bag of Words for text sese
- - - . .
classification °
e Learning phase:
e Prior P(Y)
Count how many documents you have from each topic (+ prior)
e P(XY)
For each topic, count how many times you saw word in documents of this
topic (+ prior)
e Test phase:
e For each document X,
Use naive Bayes decision rule
LengthDoc .
— ]
hyp(xnew) = arg max Ply) [l Phewly)
i=1
© Eric Xing @ CMU, 2006-2012 39
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Back to our 20 NG Case study :
e Dataset comp oD EICS e recas scicxypt
B ) rec.motorcycles sci.electronics
e 20 News Groups (20 classes) comp s PmPe iV oo sportbaschall | scimed
comp.sys.mac Aardware rec.sport. hockey sci.space

e 61,118 words, 18,774 documents comp.windovws. X
talle politics mise | talk religion misc
misc forsale talle politics. guns alt atheism
talk politics mideast soc_religion christian

e Experiment:
e Solve only a two-class subset: 1 vs 2.
e 1768 instances, 61188 features.
e Use dimensionality reduction on the data (SVD).
e Use 90% as training set, 10% as test set.
e Test prediction error used as accuracy measure.

Z I( predict, — true label.)

ictest set

Accuracy =
d # of test samples

© Eric Xing @ CMU, 2006-2012 40
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Results: Binary Classes

Accuracy 'r

oot
naf
o7t
06t
osf
04t
03t
o2t

01f

0

alt.atheism
VS.

comp.graphics

\ comp.windows.x

VSs.

VsS.
rec.motorcycles R

0

01

0.2

03

04 05 06 07 08 09
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Results: Multiple Classes

1
AccuracyDEJ

ns8r
0.7
06
0sF
04r
03
02r

01r

5-out-o0f-20 classes

1Training Ratio
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NB vs. LR

e Versus training size
0.07 . . : : . : .
| —==-Training NB
| ~=-Training Log Re
o | —e—Test NBQ 9781 . 30teatures.
5 0.05 | —#—Test Log Reg « Afixed test set
5 '« Training set varied
< o047 from 10% to 100%
g 0.03 of the training set
2
& 0,021
0.01

ob 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6
Fraction of train set used for training
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NB vs. LR

e \Versus model size

0.07 - : - - - : : : Number of
-e-Training NB dimensions of the

660l -e-Training Log Reg data varied from 5
—+—Test NB to 50 in steps of 5
——Test Leg Reg

0.05

The features were
chosen in
decreasing order
of their singular
values

0.04

0.03

Prediction error

0.02;
90% versus 10%

split on training

0.1
and test

5 10 15 20 25 30 35 40 45 50
Number of features used
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. . . . . (X X
Generative vs. Discriminative eece
00
Y ')
Classifiers e
e Goal: Wishtolearnf: X - Y, e.g., P(Y|X)
e Generative classifiers (e.g., Naive Bayes): T
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal! >
e Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)
e Discriminative classifiers:
. , C Y D
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data! X, D
e Estimate parameters of P(Y|X) directly from training data
© Eric Xing @ CMU, 2006-2012 45
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Naive Bayes vs Logistic
- oee
Regression :

e Consider Y boolean, X continuous, X=<X' ... Xm>
e Number of parameters to estimate:

1
7, exp{—zj[?(xj —,uk‘j)2 ~logao, ; —Cj}
ki

NB: p(y[x) = -
Zk'ﬂk‘ EXP{’ZJ'[ZO%(XI 7”%1)2 ~logoy.; 70}
LR: ) 1
HX) ="+~
1+e %

e Estimation method:
e NB parameter estimates are uncoupled
e LR parameter estimates are coupled

© Eric Xing @ CMU, 2006-2012 46
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Nalve Bayes vs Logistic sece
Regression o

I

e Asymptotic comparison (# training examples — infinity)
e when model assumptions correct

e NB, LR produce identical classifiers
e when model assumptions incorrect

e LRis less biased — does not assume conditional independence

e therefore expected to outperform NB

© Eric Xing @ CMU, 2006-2012 47
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Nalve Bayes vs Logistic sece
Regression o

e Non-asymptotic analysis (see [Ng & Jordan, 2002] )

e convergence rate of parameter estimates — how many training
examples needed to assure good estimates?

NB order log m (where m = # of attributes in X)
LR order m

e NB converges more quickly to its (perhaps less helpful)
asymptotic estimates

© Eric Xing @ CMU, 2006-2012 48
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Rate of convergence: logistic
regression

I
e Let hy, ,, be logistic regression trained on n examples in m
dimensions. Then with high probability:

€(hpisn) < €(hpis,c) + O( - log E)

T m

e Implication: if we want €(hpis.m) < €(hpis,c) + €0

for some small constant &, it suffices to pick order m
examples

- Convergences to its asymptotic classifier, in order m examples
e result follows from Vapnik’s structural risk bound, plus fact that the "VC

Dimension" of an m-dimensional linear separators is m

© Eric Xing @ CMU, 2006-2012 49

Rate of convergence: naive
Bayes parameters

e Letany ¢, 60, and any n > 0 be fixed.
Assume that for some fixed p, > 0,
we have that po <ply=T)<1-pp

o Let n=0((1/)log(m/s))

e Then with probability at least 1-6, after n examples:

o(x:ly = b) — rcly = <€
1. For discrete input, |ID(Ta|y b) p(:r,_|y b)| =4 foralliandb

lp(y =b) —ply =b)| < e

_ _ |fbijy=b — Hijy=b| < €1 _
2. For continuous inputs, foralliandb
<2 2
|675y=b = Oijy=s| < €1

© Eric Xing @ CMU, 2006-2012 50
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Some experiments from UCI data | s32:
o000
sets o°
e - et st s il § - v pra et '
- o \
e \:L-; T
9 T T
S iy
5 u
a3l |
e EW 0
i '.‘\' s D‘I :.1__—,_ ‘ I-:..:\' —
T
t:- .,
sl o = e
]
e T———
L] \'.
s Sl
. I
Figure 1: Resulis of 15 experiments on datasets from te UCT Machine Leamin
m:l.m Plots are of gereralization emmor ve. m (averngod over 1000 mnda
©ﬂ'€*§ﬁ§ z@mgﬁu%%{%ﬁzm loggstle regrosgion; solid Line is naive Bayes, 51
[ X X ]
[ X X X
[ X L1
82t
Summary :

e Naive Bayes classifier
e What's the assumption
e Why we use it
e How do we learn it

e Logistic regression
e Functional form follows from Naive Bayes assumptions
e For Gaussian Naive Bayes assuming variance
e For discrete-valued Naive Bayes too

e But training procedure picks parameters without the conditional independence
assumption

e Gradient ascent/descent
e — General approach when closed-form solutions unavailable

e Generative vs. Discriminative classifiers
e —Bias vs. variance tradeoff
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