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How was your hw? Save at least 10 hours for it.

About project

About team formation
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Generative vs. Discriminative 
classifiers

Goal: Wish to learn f: X → Y, e.g., P(Y|X)

Generative:
Modeling the joint distribution 
of all data

Discriminative:
Modeling only points 
at the boundary
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Learning Generative and 
Discriminative Classifiers

Goal: Wish to learn f: X → Y, e.g., P(Y|X)

Generative classifiers (e.g., Naïve Bayes):
Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)

Yn

Xn

Discriminative classifiers (e.g., logistic regression)
Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!
Estimate parameters of P(Y|X) directly from training data

Yn

Xn
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Suppose you know the following 
…

Class-specific Dist.: P(X|Y)
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Bayes classifier: 

Class prior (i.e., "weight"): P(Y)

This is a generative model of the data!
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Optimal classification
Theorem: Bayes classifier is optimal!

That is

How to learn a Bayes classifier?
Recall density estimation. We need to estimate P(X|y=k), and P(y=k) for all k
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Learning Bayes Classifier
Training data (discrete case):

Learning = estimating P(X|Y), and P(Y)

Classification = using Bayes rule to calculate P(Y | Xnew)
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Parameter learning from iid data:
The Maximum Likelihood Est.

Goal: estimate distribution parameters θ from a dataset of N
independent, identically distributed (iid), fully observed, p , y ( ), y ,
training cases

D = {x1, . . . , xN}

Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(θ) as the likelihood of the data:

);()( θθ PL
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3. pick the setting of parameters most likely to have generated the data we saw:
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How hard is it to learn the optimal 
classifier?

How do we represent these? How many parameters?
Prior, P(Y):Prior, P(Y):

Suppose Y is composed of k classes

Likelihood, P(X|Y):
Suppose X is composed of n binary features

Complex model → High variance with limited data!!!
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Gaussian Discriminative Analysis 
learning f: X → Y, where

X is a vector of real-valued features, Xn= < Xn
1,…Xn

m >n n n

Y is an indicator vector

What does that imply about the form of P(Y|X)?
The joint probability of a datum and its label is:

Yn

Xn
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Given a datum xn, we predict its label using the conditional probability of the label 
given the datum:
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Conditional Independence
X is conditionally independent of Y  given Z, if the probability 
distribution governing X is independent of the value of Y, given g g p , g
the value of Z

Which we often write

e ge.g.,

Equivalent to:
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The Naïve Bayes assumption
Naïve Bayes assumption:

Features are conditionally independent given class:y p g

More generally:

How many parameters now?
Suppose X is composed of m binary features

Y

X1 X2 X3 X4
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The Naïve Bayes Classifier
Given:

Prior P(Y)( )
m conditionally independent features X given the class Y
For each Xn, we have likelihood P(Xn|Y)

Decision rule:

If assumption holds, NB is optimal classifier!
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The A Gaussian Discriminative 
Naïve Bayes Classifier 

When X is multivariate-Gaussian vector:
The joint probability of a datum and it label is:

Yn
j p y

The naïve Bayes simplification
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More generally:

Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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The predictive distribution

Understanding the predictive distribution

)|()|( ΣΣ=k xNxyp µππµv1

Under naïve Bayes assumption: 
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For two class (i.e., K=2), and when the two classes haves the same 
variance, ** turns out to be a logistic function
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The decision boundary

The predictive distribution

11

The Bayes decision rule:
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Summary: 
The Naïve Bayes Algorithm

Train Naïve Bayes (examples)
for each* value ykfor each  value yk

estimate
for each* value xij of each attribute Xi

estimate

Classify (Xnew)
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Generative vs. Discriminative 
Classifiers

Goal: Wish to learn f: X → Y, e.g., P(Y|X)

Generative classifiers (e.g., Naïve Bayes):
Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)

Yi

Xi

Discriminative classifiers:
Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!
Estimate parameters of P(Y|X) directly from training data

Yi

Xi

18© Eric Xing @ CMU, 2006-2012
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Recall the predictive law under 
NB

© Eric Xing @ CMU, 2006-2012 19

Recall the NB predictive distribution

Understanding the predictive distribution

)|()|( ΣΣ=k xNxyp µππµv1

Under naïve Bayes assumption: 
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For two class (i.e., K=2), and when the two classes haves the same 
variance, ** turns out to be a logistic function
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Logistic regression (sigmoid 
classifier)

The condition distribution: a Bernoulli
yy xxxyp −−= 11 ))(()()|( µµ

where µ is a logistic function

In this case learning p(y|x) amounts to learning ?
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In this case, learning p(y|x) amounts to learning ...?

What is the difference to NB?
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The logistic function
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Training Logistic Regression: 
MCLE

Estimate parameters θ=<θ0, θ1, ... θm> to maximize the 
conditional likelihood of training datag

Training data 

Data likelihood = 

Data conditional likelihood =

23© Eric Xing @ CMU, 2006-2012

Expressing Conditional Log 
Likelihood

Recall the logistic function:

and conditional likelihood: 

24© Eric Xing @ CMU, 2006-2012
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Maximizing Conditional Log 
Likelihood

The objective:

Good news: l(θ) is concave function of θ( )

Bad news: no closed-form solution to maximize l(θ)

25© Eric Xing @ CMU, 2006-2012

Gradient Ascent

Property of sigmoid function:

The gradient:

© Eric Xing @ CMU, 2006-2012

The gradient ascent algorithm iterate until change < ε
For all i,

repeat
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The Newton’s method
Finding a zero of a function

27© Eric Xing @ CMU, 2006-2012

The Newton’s method (con’d)
To maximize the conditional likelihood l(θ):

since l is convex, we need to find θ∗ where l’(θ∗)=0 ! 

So we can perform the following iteration:p g

28© Eric Xing @ CMU, 2006-2012
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The Newton-Raphson method
In LR the θ is vector-valued, thus we need the following 
generalization:g

∇ is the gradient operator over the function

H is known as the Hessian of the function

29© Eric Xing @ CMU, 2006-2012

The Newton-Raphson method
In LR the θ is vector-valued, thus we need the following 
generalization:g

∇ is the gradient operator over the function

H is known as the Hessian of the function

This is also known as Iterative reweighed least squares 
(IRLS) 30© Eric Xing @ CMU, 2006-2012
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Iterative reweighed least squares 
(IRLS)

Recall in the least square est. in linear regression, we have:

which can also derived from Newton-Raphson 

Now for logistic regression: 

31© Eric Xing @ CMU, 2006-2012

IRLS
Recall in the least square est. in linear regression, we have:

which can also derived from Newton-Raphson 

Now for logistic regression: 

© Eric Xing @ CMU, 2006-2012
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Convergence curves

alt.atheism rec.autos comp.windows.x 
vs.

comp.graphics
vs. 

rec.sport.baseball

p
vs. 

rec.motorcycles

Legend:   - X-axis: Iteration #; Y-axis: error 
- In each figure, red for IRLS and blue for gradient descent

33© Eric Xing @ CMU, 2006-2012

Logistic regression: practical 
issues

NR (IRLS) takes O(N+d3) per iteration, where N = number of 
training cases and d = dimension of input x, but converge in 
ffewer iterations

Quasi-Newton methods, that approximate the Hessian, work 
faster.

Conjugate gradient takes O(Nd) per iteration, and usually 
works best in practiceworks best in practice.

Stochastic gradient descent can also be used if N is large c.f. 
perceptron rule:

34© Eric Xing @ CMU, 2006-2012
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Case Study: Text classification
Classify e-mails

Y = {Spam,NotSpam}{ p p }

Classify news articles
Y = {what is the topic of the article?}

Classify webpages
Y = {Student, professor, project, …}

What about the features X?
The text!

35© Eric Xing @ CMU, 2006-2012

Features X are entire document – Xi

for ith word in article

aardvark 0

about 2about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

36© Eric Xing @ CMU, 2006-2012

g

...

oil 1

…

Zaire 0
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Bag of words model

Typical additional assumption – Position in document 
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)doesn t matter: P(X x |Y y)  P(X x |Y y) 

“Bag of words” model – order of words on the page ignored
Sounds really silly, but often works very well!

or

When the lecture is over, remember to wake up the 
person sitting next to you in the lecture room.

37© Eric Xing @ CMU, 2006-2012

Bag of words model

Typical additional assumption – Position in document 
doesn’t matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y)doesn t matter: P(X x |Y y)  P(X x |Y y) 

“Bag of words” model – order of words on the page ignored
Sounds really silly, but often works very well!

or

in is lecture lecture next over person remember room 
sitting the the the to to up wake when you

38© Eric Xing @ CMU, 2006-2012
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NB with Bag of Words for text 
classification

Learning phase:
Prior P(Y)Prior P(Y)

Count how many documents you have from each topic (+ prior)

P(Xi|Y) 
For each topic, count how many times you saw word in documents of this 
topic (+ prior)

Test phase:
For each document xnew

Use naïve Bayes decision rule

39© Eric Xing @ CMU, 2006-2012

Back to our 20 NG Case study

Dataset 
20 News Groups (20 classes)20 News Groups (20 classes)
61,118 words, 18,774 documents

Experiment:
Solve only a two-class subset: 1 vs 2.
1768 instances, 61188 features.
Use dimensionality reduction on the data (SVD).
Use 90% as training set, 10% as test set.
Test prediction error used as accuracy measure.

40© Eric Xing @ CMU, 2006-2012
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Results: Binary Classes

alt.atheism 

rec.autos 
vs. 

rec.sport.baseballAccuracy vs.
comp.graphics

p

comp.windows.x 
vs. 
t l

Accuracy

rec.motorcycles

Training Ratio

41© Eric Xing @ CMU, 2006-2012

Results: Multiple Classes

AccuracyAccuracy
5-out-of-20 classes

Training Ratio
10-out-of-20 classes

All 20 classes

42
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Versus training size

NB vs. LR

• 30 features.
• A fixed test set
• Training set varied 

from 10% to 100% 
of the training set

43© Eric Xing @ CMU, 2006-2012

Versus model size

NB vs. LR

• Number of 
dimensions of the 
data varied from 5 
to 50 in steps of 5

• The features were 
chosen in 
decreasing order 
of their singularof their singular 
values 

• 90% versus 10% 
split on training 
and test

44© Eric Xing @ CMU, 2006-2012
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Generative vs. Discriminative 
Classifiers

Goal: Wish to learn f: X → Y, e.g., P(Y|X)

Generative classifiers (e.g., Naïve Bayes):
Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the data!
Estimate parameters of P(X|Y), P(Y) directly from training data
Use Bayes rule to calculate P(Y|X= x)

Yi

Xi

Discriminative classifiers:
Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the data!
Estimate parameters of P(Y|X) directly from training data

Yi

Xi

45© Eric Xing @ CMU, 2006-2012

Naïve Bayes vs Logistic 
Regression

Consider Y boolean, X continuous, X=<X1 ... Xm>
Number of parameters to estimate:Number of parameters to estimate:

NB:

LR:
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Naïve Bayes vs Logistic 
Regression

Asymptotic comparison (# training examples → infinity)

when model assumptions correct
NB, LR produce identical classifiers

when model assumptions incorrect
LR is less biased – does not assume conditional independence
therefore expected to outperform NBtherefore expected to outperform NB

47© Eric Xing @ CMU, 2006-2012

Naïve Bayes vs Logistic 
Regression

Non-asymptotic analysis (see [Ng & Jordan, 2002] )

convergence rate of parameter estimates – how many training 
examples needed to assure good estimates?

NB order log m (where m = # of attributes in X)
LR order m

NB converges more quickly to its (perhaps less helpful) 
asymptotic estimates

48© Eric Xing @ CMU, 2006-2012



25

Rate of convergence: logistic 
regression

Let hDis,m be logistic regression trained on n examples in m
dimensions. Then with high probability:g p y

Implication: if we want 
for some small constant ε0, it suffices to pick order m 

lexamples

Convergences to its asymptotic classifier, in order m examples

result follows from Vapnik’s structural risk bound, plus fact that the "VC 
Dimension" of an m-dimensional linear separators is m

49© Eric Xing @ CMU, 2006-2012

Rate of convergence: naïve 
Bayes parameters

Let any ε1, δ>0, and any n ≥ 0 be fixed. 
Assume that for some fixed ρ > 0Assume that for some fixed ρ0 > 0, 
we have that 

Let

Then with probability at least 1-δ, after n examples:p y p

1. For discrete input, for all i and b

2. For continuous inputs, for all i and b

50© Eric Xing @ CMU, 2006-2012
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Some experiments from UCI data 
sets

51© Eric Xing @ CMU, 2006-2012

Summary

Naïve Bayes classifier
What’s the assumptionp
Why we use it
How do we learn it

Logistic regression
Functional form follows from Naïve Bayes assumptions
For Gaussian Naïve Bayes assuming variance
For discrete-valued Naïve Bayes too
But training procedure picks parameters without the conditional independenceBut training procedure picks parameters without the conditional independence 
assumption

Gradient ascent/descent
– General approach when closed-form solutions unavailable

Generative vs. Discriminative classifiers
– Bias vs. variance tradeoff
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