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Machine LearningMachine Learning

Linear Regression and Linear Regression and SparsitySparsity

Eric Eric XingXing
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Machine learning for apartment 
hunting 

z Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, distance to 
campus …

Living area (ft2) # bedroom Rent ($)

230 1 600230 1 600
506 2 1000
433 2 1100
109 1 500
…
150 1 ?
270 1.5 ?
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The learning problem

z Features: 
z Living area, distance to campus, #t z Living area, distance to campus, # 

bedroom …
z Denote as x=[x1, x2, … xk]

z Target: 
z Rent
z Denoted as y

z Training set:
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Linear Regression
z Assume that Y (target) is a linear function of X (features):

z e.g.:
21ˆ

g

z let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

z then we have the following general representation of the linear function:

2
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1
10ˆ xxy θθθ ++=

z Our goal is to pick the optimal       . How!
z We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method
z The Cost Function:

∑
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z Consider a gradient descent algorithm:
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The Least-Mean-Square (LMS) 
method
z Now we have the following descent rule: 

n

z For a single training point, we have: 
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z This is known as the LMS update rule, or the Widrow-Hoff learning rule
z This is actually a "stochastic", "coordinate" descent algorithm
z This can be used as a on-line algorithm
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Geometric and Convergence of LMS

N=1 N=2 N=3

Claim: when the step size α satisfies certain condition, and when certain 
other technical conditions are satisfied, LMS will converge to an “optimal 
region”.   
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Steepest Descent and LMS
z Steepest descent

z Note that:
T
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z This is as a batch gradient descent algorithm
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The normal equations
z Write the cost function in matrix form:
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Some matrix derivatives
z For                       , define:
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Comments on the normal 
equation
z In most situations of practical interest, the number of data 

points N is larger than the dimensionality k of the input space p g y p p
and the matrix X is of full column rank. If this condition holds, 
then it is easy to verify that XTX is necessarily invertible.

z The assumption that XTX is invertible implies that it is positive 
definite, thus at the critical point we have found is a minimum. 

z What if X has less than full column rank? Æ regularization 
(later). 

11© Eric Xing @ CMU, 2006-2012

Direct and Iterative methods
z Direct methods: we can achieve the solution in a single step 

by solving the normal equationy g q
z Using Gaussian elimination or QR decomposition, we converge in a finite number 

of steps
z It can be infeasible when data are streaming in in real time, or of very large 

amount

z Iterative methods: stochastic or steepest gradient
z Converging in a limiting sense
z But more attractive in large practical problems 
z Caution is needed for deciding the learning rate α

12© Eric Xing @ CMU, 2006-2012
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Convergence rate
z Theorem: the steepest descent equation algorithm 

converge to the minimum of the cost characterized by g y
normal equation:

If 

z A formal analysis of LMS need more math-mussels; in 
practice, one can use a small α, or gradually decrease α.
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A Summary:
z LMS update rule

tTtt xy )( θαθθ x−+=+1

z Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local 
optimum

z Cons: convergence to optimum not always guaranteed

z Steepest descent

z Pros: easy to implement, conceptually clean, guaranteed convergence
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z Cons: batch, often slow converging

z Normal equations

z Pros: a single-shot algorithm! Easiest to implement.
z Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 

(e.g., matrix is singular ..), although there are ways to get around this …
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Geometric Interpretation of LMS
z The predictions on the training data are:

( ) 1ˆ
z Note that
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Probabilistic Interpretation of 
LMS
z Let us assume that the target variable and the inputs are 

related by the equation:y q

where ε is an error term of unmodeled effects or random noise

z Now assume that ε follows a Gaussian N(0,σ), then we have:
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Probabilistic Interpretation of 
LMS, cont.
z Hence the log-likelihood is:

z Do you recognize the last term?

Yes it is: 
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z Thus under independence assumption, LMS is equivalent to 
MLE of θ !

=i 12
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Case study: 
predicting gene expression

The genetic pictureg p

CGTTTCACTGTACAATTT
causal SNPscausal SNPs

a univariate phenotype:a univariate phenotype:

i.e., the expression intensity of i.e., the expression intensity of 
a genea gene

18© Eric Xing @ CMU, 2006-2012
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Phenotype (BMI) Genotype

C T C T

Association Mapping as Regression

Individual 
1

Individual 
2

I di id l

2.5

4.8

4 7

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

G T C T

…

Individual 
N

4.7 . . G  . . . . . T . . C . . . . . . . T . . .
. . G  . . . . . T . . G . . . . . . . T . . .

Causal SNPBenign SNPs
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Phenotype (BMI) Genotype

Association Mapping as Regression

Individual 
1

Individual 
2

I di id l

2.5

4.8

4 7

. . 0 . . . . .  1 . . 0 . . . . . . . 0 . . .

. . 1  . . . . . 1 . . 1 . . . . . . . 1 . . .

…

Individual 
N

4.7 . . 2  . . . . . 2 . . 1 . . . . . . . 0 . . .

yi = ∑
=

J

j
jijx

1

β SNPs with large 
|βj| are relevant
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Experimental setup
z Asthama dataset

z 543 individuals, genotyped at 34 SNPsg yp
z Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
z X=543x34 matrix
z Y=Phenotype variable (continuous)

z A single phenotype was used for regression

z Implementation details
z Iterative methods: Batch update and online update implemented.
z For both methods, step size α is chosen to be a small fixed value (10-6). This 

choice is based on the data used for experiments.
z Both methods are only run to a maximum of 2000 epochs or until the change in 

training MSE is less than 10-4

21© Eric Xing @ CMU, 2006-2012

Convergence Curves

z For the batch 
method, the training 
MSE is initially large 
due to uninformed 
initialization

z In the online update, 
N d t fN updates for every 
epoch reduces MSE 
to a much smaller 
value.

22© Eric Xing @ CMU, 2006-2012
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The Learned Coefficients

23© Eric Xing @ CMU, 2006-2012

A 

GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Association Strength

G
 A

 A
 C

 C
 A

 T
 G

 A
 A

 G
 T

 A

2.1 x= ?

T 
G

Xy x= β
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A 

GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Association Strength

G
 A

 A
 C

 C
 A

 T
 G

 A
 A

 G
 T

 A

2.1 x=

T 
G

Many non-zero associations: 
Which SNPs are truly significant?

25© Eric Xing @ CMU, 2006-2012

Sparsity
z One common assumption to make sparsity.

z Makes biological sense: each phenotype is likely to be 
associated with a small number of SNPs, rather than all the 
SNPs.

z Makes statistical sense: Learning is now feasible in high 
dimensions with small sample sizedimensions with small sample size

26© Eric Xing @ CMU, 2006-2012
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Sparsity: In a mathematical sense
z Consider least squares linear regression problem:
z Sparsity means most of the beta’s are zero xz Sparsity means most of the beta s are zero.

…

y

x1

x2

x3

x

β1

β2

β3

βn-1

β

z But this is not convex!!! Many local optima, computationally 
intractable.

xn-1

xn

βn

27© Eric Xing @ CMU, 2006-2012

L1 Regularization (LASSO)
(Tibshirani, 1996) 

z A convex relaxation.

Constrained Form Lagrangian Form

z Still enforces sparsity!

28© Eric Xing @ CMU, 2006-2012
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GenotypeTrait

Lasso for Reducing False Positives

A 

Association Strength

x=2.1 

G
 A

 A
 C

 C
 A

 T
 G

 A
 A

 G
 T

 A

Lasso 
Penalty    

Many zero associations (sparse results), 
but what if there are multiple related traits?

+ ∑
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j 1
λ |βj |

T 
G y

for sparsity
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Ridge Regression vs Lasso
X X

Ridge Regression:  Lasso: HOT
!

βs with

βs with constant J(β)
(level sets of J(β))

βs with β2

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high‐dimensional problems – don’t have to store all coordinates!

βs with 
constant 
l1 norm

βs with 
constant 
l2 norm

β

β1
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Bayesian Interpretation
z Treat the distribution parameters θ also as a random variable
z The a posteriori distribution of θ after seem the data is:z The a posteriori distribution of θ after seem the data is:

This is Bayes Rule

lik lih di l
priorlikelihoodposterior ×

=

∫
==

θθθ
θθθθθ

dpDp
pDp

Dp
pDpDp

)()|(
)()|(

)(
)()|()|(

likelihoodmarginal
p

The prior p(.) encodes our prior knowledge about the domain
31© Eric Xing @ CMU, 2006-2012

What if (XTX) is not invertible ? 

Regularized Least Squares and 
MAP

log likelihood log prior

I) Gaussian Prior

Prior belief that β is Gaussian with zero‐mean biases solution to “small” β

0

Ridge Regression

Closed form: HW

32© Eric Xing @ CMU, 2006-2012
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Regularized Least Squares and 
MAP

What if (XTX) is not invertible ? 

log likelihood log prior

II) Laplace Prior

Prior belief that β is Laplace with zero‐mean biases solution to “small” β

Lasso

Closed form: HW

33© Eric Xing @ CMU, 2006-2012

Take home message
z Gradient descent

z On-line
z Batch

z Normal equations
z Geometric interpretation of LMS
z Probabilistic interpretation of LMS, and equivalence of LMS and 

MLE under certain assumption (what?) 
z Sparsity: 

z Approach: ridge vs lasso regressionz Approach: ridge vs. lasso regression
z Interpretation: regularized regression versus Bayesian regression
z Algorithm: convex optimization (we did not discuss  this)

z LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)

z Weighting points by importance versus by fitness

34© Eric Xing @ CMU, 2006-2012
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Advanced Material: 
Beyond basic LR
z LR with non-linear basis functions

z Locally weighted linear regression

z Regression trees and Multilinear Interpolationg p

35© Eric Xing @ CMU, 2006-2012

We will discuss this in next class after we set the state right!
(if we’ve got time ☺)

Non-linear functions:

36© Eric Xing @ CMU, 2006-2012
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LR with non-linear basis 
functions
z LR does not mean we can only deal with linear relationships

z We are free to design (non-linear) features under LR

where the φj(x) are fixed basis functions (and we define φ0(x) = 1).

)()( xxy Tm

j j φθφθθ =+= ∑ =10

z Example: polynomial regression:

z We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.

[ ]321 xxxx ,,,:)( =φ
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Basis functions
z There are many basis functions, e.g.:

P l i l 1−j)(φz Polynomial

z Radial basis functions

z Sigmoidal

1= j
j xx)(φ
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z Splines, Fourier, Wavelets, etc

⎠⎝ s
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1D and 2D RBFs
z 1D RBF

z After fit:

39© Eric Xing @ CMU, 2006-2012

Good and Bad RBFs
z A good 2D RBF

z Two bad 2D RBFs

40© Eric Xing @ CMU, 2006-2012
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Overfitting and underfitting

θθ + 2θθθ ++ ∑5 jθxy 10 θθ += 2
210 xxy θθθ ++= ∑ =

=
0j

j
j xy θ

41© Eric Xing @ CMU, 2006-2012

Bias and variance
z We define the bias of a model to be the expected 

generalization error even if we were to fit it to a very (say, g y ( y,
infinitely) large training set.

z By fitting "spurious" patterns in the training set, we might 
again obtain a model with large generalization error. In this 
case, we say the model has large variance.

42© Eric Xing @ CMU, 2006-2012
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Locally weighted linear 
regression

z The algorithm:
Instead of minimizing ∑

n
TJ 21 )()( θθInstead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

z where x is the query point for which we'd like to know its corresponding y

∑
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iw

Æ Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)
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Parametric vs. non-parametric
z Locally weighted linear regression is the second example we 

are running into of a non-parametric algorithm. (what is the g p g (
first?)

z The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 
z because it has a fixed, finite number of parameters (the θ), which are fit to the 

data;
z Once we've fit the θ and stored them away, we no longer need to keep the 

training data around to make future predictionstraining data around to make future predictions.
z In contrast, to make predictions using locally weighted linear regression, we need 

to keep the entire training set around. 

z The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.

44© Eric Xing @ CMU, 2006-2012
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Robust Regression

z The best fit from a quadratic z But this is probably better …The best fit from a quadratic 
regression

But this is probably better …

How can we do this?
45© Eric Xing @ CMU, 2006-2012

LOESS-based Robust Regression
z Remember what we do in "locally weighted linear regression"?
Æ we "score" each point for its impotenceÆ we score  each point for its impotence

z Now we score each point according to its "fitness"

(Courtesy to Andrew Moor) 46© Eric Xing @ CMU, 2006-2012
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Robust regression
z For k = 1 to R…

z Let (xk ,yk) be the kth datapoint( k yk) p
z Let yest

k be predicted value of yk

z Let wk be a weight for data point k that is large if 
the data point fits well and small if it fits badly:

z Then redo the regression using weighted data points.

( )2)( est
kkk yyw −=φ

z Repeat whole thing until converged!

47© Eric Xing @ CMU, 2006-2012

Robust regression—probabilistic 
interpretation
z What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 

),( 20 σθ N+= k
T

ky x

p
estimation of θ

48© Eric Xing @ CMU, 2006-2012
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Robust regression—probabilistic 
interpretation
z What LOESS robust regression does:

Assume yk was originally generated using the following recipe:

with probability p:

but otherwise

Computational task is to find the Maximum Likelihood

),( 20 σθ N+= k
T

ky x

),(~ huge
2σµNky

Computational task is to find the Maximum Likelihood 
estimates of θ, p, µ and σhuge. 

z The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an 
instance of the famous E.M. algorithm

49© Eric Xing @ CMU, 2006-2012

Regression Tree
z Decision tree for regression

Gender Rich? Num. 
Children

# travel 
per yr.

Age

F No 2 5 38

M No 0 2 25

Gender?

Female Male

M Yes 1 0 72

: : : : :
Predicted age=39 Predicted age=36

50© Eric Xing @ CMU, 2006-2012
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A conceptual picture
z Assuming regular regression trees, can you sketch a graph of 

the fitted function y*(x) over this diagram?y ( ) g

51© Eric Xing @ CMU, 2006-2012

How about this one?
z Multilinear Interpolation

z We wanted to create a continuous and piecewise linear fit to 
the data

52© Eric Xing @ CMU, 2006-2012
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Take home message
z Gradient descent

z On-line
z Batch

z Normal equations
z Geometric interpretation of LMS
z Probabilistic interpretation of LMS, and equivalence of LMS and 

MLE under certain assumption (what?) 
z Sparsity: 

z Approach: ridge vs lasso regressionz Approach: ridge vs. lasso regression
z Interpretation: regularized regression versus Bayesian regression
z Algorithm: convex optimization (we did not discuss  this)

z LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)

z Weighting points by importance versus by fitness

53© Eric Xing @ CMU, 2006-2012


