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Machine LearningMachine Learning

Linear Regression and Linear Regression and SparsitySparsity

Eric Eric XingXing

1010--701/15701/15--781, Fall 781, Fall 20122012

Lecture 5, September 24, 2012
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Machine learning for apartment 
hunting 

Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, distance to 
campus …

Living area (ft2) # bedroom Rent ($)

230 1 600230 1 600
506 2 1000
433 2 1100
109 1 500
…
150 1 ?
270 1.5 ?
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The learning problem

Features: 
Living area, distance to campus, #t Living area, distance to campus, # 
bedroom …
Denote as x=[x1, x2, … xk]

Target: 
Rent
Denoted as y

Training set:
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Linear Regression
Assume that Y (target) is a linear function of X (features):

e.g.:
21ˆ

g

let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

then we have the following general representation of the linear function:

2
2

1
10ˆ xxy θθθ ++=

Our goal is to pick the optimal       . How!
We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method

The Cost Function:

∑
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Consider a gradient descent algorithm:
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The Least-Mean-Square (LMS) 
method

Now we have the following descent rule: 
n

For a single training point, we have: 
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This is known as the LMS update rule, or the Widrow-Hoff learning rule
This is actually a "stochastic", "coordinate" descent algorithm
This can be used as a on-line algorithm
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Geometric and Convergence of LMS

N=1 N=2 N=3

Claim: when the step size α satisfies certain condition, and when certain 
other technical conditions are satisfied, LMS will converge to an “optimal 
region”.   
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Steepest Descent and LMS
Steepest descent

Note that:
T
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This is as a batch gradient descent algorithm
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The normal equations
Write the cost function in matrix form:
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Some matrix derivatives
For                       , define:
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Comments on the normal 
equation

In most situations of practical interest, the number of data 
points N is larger than the dimensionality k of the input space p g y p p
and the matrix X is of full column rank. If this condition holds, 
then it is easy to verify that XTX is necessarily invertible.

The assumption that XTX is invertible implies that it is positive 
definite, thus at the critical point we have found is a minimum. 

What if X has less than full column rank? regularization 
(later). 

11© Eric Xing @ CMU, 2006-2012

Direct and Iterative methods
Direct methods: we can achieve the solution in a single step 
by solving the normal equationy g q

Using Gaussian elimination or QR decomposition, we converge in a finite number 
of steps
It can be infeasible when data are streaming in in real time, or of very large 
amount

Iterative methods: stochastic or steepest gradient
Converging in a limiting sense
But more attractive in large practical problems 
Caution is needed for deciding the learning rate α

12© Eric Xing @ CMU, 2006-2012
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Convergence rate
Theorem: the steepest descent equation algorithm 
converge to the minimum of the cost characterized by g y
normal equation:

If 

A formal analysis of LMS need more math-mussels; in 
practice, one can use a small α, or gradually decrease α.
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A Summary:
LMS update rule

tTtt xy )( θαθθ x−+=+1

Pros: on-line, low per-step cost, fast convergence and perhaps less prone to local 
optimum
Cons: convergence to optimum not always guaranteed

Steepest descent

Pros: easy to implement, conceptually clean, guaranteed convergence
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Cons: batch, often slow converging

Normal equations

Pros: a single-shot algorithm! Easiest to implement.
Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 
(e.g., matrix is singular ..), although there are ways to get around this …
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Geometric Interpretation of LMS
The predictions on the training data are:

( ) 1ˆ
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Probabilistic Interpretation of 
LMS

Let us assume that the target variable and the inputs are 
related by the equation:y q

where ε is an error term of unmodeled effects or random noise

Now assume that ε follows a Gaussian N(0,σ), then we have:
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Probabilistic Interpretation of 
LMS, cont.

Hence the log-likelihood is:

Do you recognize the last term?

Yes it is: 
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Thus under independence assumption, LMS is equivalent to 
MLE of θ !

=i 12
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Case study: 
predicting gene expression

The genetic pictureg p

CGTTTCACTGTACAATTT
causal SNPscausal SNPs

a univariate phenotype:a univariate phenotype:

i.e., the expression intensity of i.e., the expression intensity of 
a genea gene

18© Eric Xing @ CMU, 2006-2012
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Phenotype (BMI) Genotype

C T C T

Association Mapping as Regression

Individual 
1

Individual 
2

I di id l

2.5

4.8

4 7

. . C . . . . .  T . . C . . . . . . . T . . .

. . C . . . . .  A . . C . . . . . . . T . . .

. . G  . . . . . A . . G . . . . . . . A . . .

. . C . . . . .  T . . C . . . . . . . T . . .

G T C T

…

Individual 
N

4.7 . . G  . . . . . T . . C . . . . . . . T . . .
. . G  . . . . . T . . G . . . . . . . T . . .

Causal SNPBenign SNPs

19© Eric Xing @ CMU, 2006-2012

Phenotype (BMI) Genotype

Association Mapping as Regression

Individual 
1

Individual 
2

I di id l

2.5

4.8

4 7

. . 0 . . . . .  1 . . 0 . . . . . . . 0 . . .

. . 1  . . . . . 1 . . 1 . . . . . . . 1 . . .

…

Individual 
N

4.7 . . 2  . . . . . 2 . . 1 . . . . . . . 0 . . .

yi = ∑
=

J

j
jijx

1

β SNPs with large 
|βj| are relevant
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Experimental setup
Asthama dataset

543 individuals, genotyped at 34 SNPsg yp
Diploid data was transformed into 0/1 (for homozygotes) or 2 (for heterozygotes)
X=543x34 matrix
Y=Phenotype variable (continuous)

A single phenotype was used for regression

Implementation details
Iterative methods: Batch update and online update implemented.
For both methods, step size α is chosen to be a small fixed value (10-6). This 
choice is based on the data used for experiments.
Both methods are only run to a maximum of 2000 epochs or until the change in 
training MSE is less than 10-4

21© Eric Xing @ CMU, 2006-2012

Convergence Curves

For the batch 
method, the training 
MSE is initially large 
due to uninformed 
initialization

In the online update, 
N d t fN updates for every 
epoch reduces MSE 
to a much smaller 
value.

22© Eric Xing @ CMU, 2006-2012
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The Learned Coefficients

23© Eric Xing @ CMU, 2006-2012

A 

GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Association Strength

G
 A

 A
 C

 C
 A

 T
 G

 A
 A

 G
 T

 A

2.1 x= ?

T 
G

Xy x= β
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A 

GenotypeTrait

Multivariate Regression for Trait 
Association Analysis

Association Strength

G
 A

 A
 C

 C
 A

 T
 G

 A
 A

 G
 T

 A

2.1 x=

T 
G

Many non-zero associations: 
Which SNPs are truly significant?

25© Eric Xing @ CMU, 2006-2012

Sparsity
One common assumption to make sparsity.

Makes biological sense: each phenotype is likely to be 
associated with a small number of SNPs, rather than all the 
SNPs.

Makes statistical sense: Learning is now feasible in high 
dimensions with small sample sizedimensions with small sample size

26© Eric Xing @ CMU, 2006-2012
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Sparsity: In a mathematical sense
Consider least squares linear regression problem:
Sparsity means most of the beta’s are zero xSparsity means most of the beta s are zero.

…

y

x1

x2

x3

x

β1

β2

β3

βn-1

β

But this is not convex!!! Many local optima, computationally 
intractable.

xn-1

xn

βn

27© Eric Xing @ CMU, 2006-2012

L1 Regularization (LASSO)
(Tibshirani, 1996) 

A convex relaxation.

Constrained Form Lagrangian Form

Still enforces sparsity!

28© Eric Xing @ CMU, 2006-2012
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GenotypeTrait

Lasso for Reducing False Positives

A 

Association Strength

x=2.1 

G
 A

 A
 C

 C
 A

 T
 G

 A
 A

 G
 T

 A

Lasso 
Penalty    

Many zero associations (sparse results), 
but what if there are multiple related traits?

+ ∑
=

J

j 1
λ |βj |

T 
G y

for sparsity
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Ridge Regression vs Lasso
X X

Ridge Regression:  Lasso: HOT
!

βs with

βs with constant J(β)
(level sets of J(β))

βs with β2

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high‐dimensional problems – don’t have to store all coordinates!

βs with 
constant 
l1 norm

βs with 
constant 
l2 norm

β

β1

30© Eric Xing @ CMU, 2006-2012
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Bayesian Interpretation
Treat the distribution parameters θ also as a random variable
The a posteriori distribution of θ after seem the data is:The a posteriori distribution of θ after seem the data is:

This is Bayes Rule

lik lih di l
priorlikelihoodposterior ×

=

∫
==

θθθ
θθθθθ

dpDp
pDp

Dp
pDpDp

)()|(
)()|(

)(
)()|()|(

likelihoodmarginal
p

The prior p(.) encodes our prior knowledge about the domain
31© Eric Xing @ CMU, 2006-2012

What if (XTX) is not invertible ? 

Regularized Least Squares and 
MAP

log likelihood log prior

I) Gaussian Prior

Prior belief that β is Gaussian with zero‐mean biases solution to “small” β

0

Ridge Regression

Closed form: HW

32© Eric Xing @ CMU, 2006-2012
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Regularized Least Squares and 
MAP

What if (XTX) is not invertible ? 

log likelihood log prior

II) Laplace Prior

Prior belief that β is Laplace with zero‐mean biases solution to “small” β

Lasso

Closed form: HW

33© Eric Xing @ CMU, 2006-2012

Take home message
Gradient descent

On-line
Batch

Normal equations
Geometric interpretation of LMS
Probabilistic interpretation of LMS, and equivalence of LMS and 
MLE under certain assumption (what?) 
Sparsity: 

Approach: ridge vs lasso regressionApproach: ridge vs. lasso regression
Interpretation: regularized regression versus Bayesian regression
Algorithm: convex optimization (we did not discuss  this)

LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)
Weighting points by importance versus by fitness

34© Eric Xing @ CMU, 2006-2012
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Advanced Material: 
Beyond basic LR

LR with non-linear basis functions

Locally weighted linear regression

Regression trees and Multilinear Interpolationg p

35© Eric Xing @ CMU, 2006-2012

We will discuss this in next class after we set the state right!
(if we’ve got time ☺)

Non-linear functions:

36© Eric Xing @ CMU, 2006-2012
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LR with non-linear basis 
functions

LR does not mean we can only deal with linear relationships

We are free to design (non-linear) features under LR

where the φj(x) are fixed basis functions (and we define φ0(x) = 1).

)()( xxy Tm

j j φθφθθ =+= ∑ =10

Example: polynomial regression:

We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.

[ ]321 xxxx ,,,:)( =φ
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Basis functions
There are many basis functions, e.g.:

P l i l 1−j)(φPolynomial

Radial basis functions

Sigmoidal

1= j
j xx)(φ
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Splines, Fourier, Wavelets, etc

⎠⎝ s
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1D and 2D RBFs
1D RBF

After fit:

39© Eric Xing @ CMU, 2006-2012

Good and Bad RBFs
A good 2D RBF

Two bad 2D RBFs

40© Eric Xing @ CMU, 2006-2012
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Overfitting and underfitting

θθ + 2θθθ ++ ∑5 jθxy 10 θθ += 2
210 xxy θθθ ++= ∑ =

=
0j

j
j xy θ

41© Eric Xing @ CMU, 2006-2012

Bias and variance
We define the bias of a model to be the expected 
generalization error even if we were to fit it to a very (say, g y ( y,
infinitely) large training set.

By fitting "spurious" patterns in the training set, we might 
again obtain a model with large generalization error. In this 
case, we say the model has large variance.

42© Eric Xing @ CMU, 2006-2012
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Locally weighted linear 
regression

The algorithm:
Instead of minimizing ∑

n
TJ 21 )()( θθInstead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

where x is the query point for which we'd like to know its corresponding y

∑
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2

2τ
)(exp xxi

iw

Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)

43© Eric Xing @ CMU, 2006-2012

Parametric vs. non-parametric
Locally weighted linear regression is the second example we 
are running into of a non-parametric algorithm. (what is the g p g (
first?)

The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 

because it has a fixed, finite number of parameters (the θ), which are fit to the 
data;
Once we've fit the θ and stored them away, we no longer need to keep the 
training data around to make future predictionstraining data around to make future predictions.
In contrast, to make predictions using locally weighted linear regression, we need 
to keep the entire training set around. 

The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.

44© Eric Xing @ CMU, 2006-2012
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Robust Regression

The best fit from a quadratic But this is probably better …The best fit from a quadratic 
regression

But this is probably better …

How can we do this?
45© Eric Xing @ CMU, 2006-2012

LOESS-based Robust Regression
Remember what we do in "locally weighted linear regression"?

we "score" each point for its impotencewe score  each point for its impotence

Now we score each point according to its "fitness"

(Courtesy to Andrew Moor) 46© Eric Xing @ CMU, 2006-2012
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Robust regression
For k = 1 to R…

Let (xk ,yk) be the kth datapoint( k yk) p
Let yest

k be predicted value of yk

Let wk be a weight for data point k that is large if 
the data point fits well and small if it fits badly:

Then redo the regression using weighted data points.

( )2)( est
kkk yyw −=φ

Repeat whole thing until converged!

47© Eric Xing @ CMU, 2006-2012

Robust regression—probabilistic 
interpretation

What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 

),( 20 σθ N+= k
T

ky x

p
estimation of θ

48© Eric Xing @ CMU, 2006-2012
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Robust regression—probabilistic 
interpretation

What LOESS robust regression does:

Assume yk was originally generated using the following recipe:

with probability p:

but otherwise

Computational task is to find the Maximum Likelihood

),( 20 σθ N+= k
T

ky x

),(~ huge
2σµNky

Computational task is to find the Maximum Likelihood 
estimates of θ, p, µ and σhuge. 

The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an 
instance of the famous E.M. algorithm

49© Eric Xing @ CMU, 2006-2012

Regression Tree
Decision tree for regression

Gender Rich? Num. 
Children

# travel 
per yr.

Age

F No 2 5 38

M No 0 2 25

Gender?

Female Male

M Yes 1 0 72

: : : : :
Predicted age=39 Predicted age=36

50© Eric Xing @ CMU, 2006-2012
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A conceptual picture
Assuming regular regression trees, can you sketch a graph of 
the fitted function y*(x) over this diagram?y ( ) g

51© Eric Xing @ CMU, 2006-2012

How about this one?
Multilinear Interpolation

We wanted to create a continuous and piecewise linear fit to 
the data

52© Eric Xing @ CMU, 2006-2012
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Take home message
Gradient descent

On-line
Batch

Normal equations
Geometric interpretation of LMS
Probabilistic interpretation of LMS, and equivalence of LMS and 
MLE under certain assumption (what?) 
Sparsity: 

Approach: ridge vs lasso regressionApproach: ridge vs. lasso regression
Interpretation: regularized regression versus Bayesian regression
Algorithm: convex optimization (we did not discuss  this)

LR does not mean fitting linear relations, but linear combination or 
basis functions (that can be non-linear)
Weighting points by importance versus by fitness

53© Eric Xing @ CMU, 2006-2012


