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True vs. Empirical Risk

True Risk: Target performance measure

Classification — Probability of misclassification P(f(X) #Y)
Regression — Mean Squared Error E[(f(X) — Y)?]

performance on a random test point (X,Y)

Empirical Risk: Performance on training data

1 n
Classification — Proportion of misclassified examples — > 1¢(x ).y
n i i

=1
n

S (F(Xy) — )2

=1

Regression — Average Squared Error 1



Overfitting

Is the following predictor a good one? f*(z) f(x)
Yi. r=X;fori=1,....n
flz) = { any value, otherwise
[
| R

What is its empirical risk? (performance on training data)
zero |

What about true risk?
> Zero

Will predict very poorly on new random test point:
Large generalization error |



Overfitting
If we allow very complicated predictors, we could overfit the

training data.

Examples: Classification (O-NN classifier)

Football player ?

© No
@ Yes




Overfitting
If we allow very complicated predictors, we could overfit the

training data.

Examples: Regression (Polynomial of order k — degree up to k-1)
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Effect of Model Complexity

If we allow very complicated predictors, we could overfit the
training data.

Prediction 4 ! : —
Error | fixed # training data
true risk
empirical risk =~
| o .
- | > .
underfitting overfitting Complexity

Best

Model @

Empirical risk is no longer a
good indicator of true risk



Behavior of True Risk

vw/\/\éf*(X)
Regression Y = f"(X)+e¢ € ~ ./\/‘(0702) L

PP Vo=

| x
True Risk

R(f) =E[(f(X) - Y)*]= BI(f(X) - ELf(X)])?] + E[(E[f(X)] — f*(X))*] + 0

J

! Y
Variance Bias

True risk
(Mean Square Error)

Variance

Complexity of F

b
Bayes
error
= R(f*)



Bias — Variance Tradeoff

£4(X)
* oy N/\/\é
V=Ff(X)+e e~N(0,0°) TR

Regression:
. -
R(f*)=Exy[(f (X) = Y)?] = E[’] = ¢° Notice: Optimal predictor
does not have zero error
R(ﬁ): Ex v p [(fn(X) _ Y)Q] D, - training data of size n

= Ex.v p,[(fn(X)=Ep, [fn(X)])?] + Ex. v [(Ep, [fn(X)]—f*(X))?] + 62
‘ , o , S

variance bias” 2 Noise var

Excess Risk = R(f,) — R(f*) = variance + biaiz

Random component Model restriction



Bias — Variance Tradeoff: Derivation

F4(X)
* oy N/\/\é
V=Ff(X)+e e~N(0,0°) TR

o0,

Regression:

v

R(f*)=Exy[(f (X) - Y)?] = E[’] = ¢° Notice: Optimal predictor
does not have zero error

R(fn) = Ex.v.0,[(fn(X) — Y)?] D,, - training data of size n
= Ex,v,0, | (fn(X) = Ep,[fn(X)] + Ep, [fn(X)] — Y)?]

= Ex, v, 0, |(Ffn(X) = Ep, [fn(X)D? + Bp, [fn(X)] - ¥)?
+2(fn(X) = Ep, [fn (XD (Ep,[fn(X)] = V)|

=Ex.v.p, [(J?n(X) — ]EDn[fn(X)])Q} +Ex,v,p, [(EDn[fn(X)] ~ Y)Q}

+Ex, v [2(Bp, [ CH=TFD, [ (X)) (Bp, [fo(X)] = V)]
0



Bias — Variance Tradeoff: Derivation

F4(X)
* oy N/\/\é
V=Ff(X)+e e~N(0,0°) TR

Regression:
. -
R(f*)=Exy[(f (X) - Y)?] = E[’] = ¢° Notice: Optimal predictor
does not have zero error
R(fn) = Ex.v.0,[(fn(X) — Y)?] D,, - training data of size n

= Ex,v,0, | (fn(X) = Ep,[fn(X)] + Ep, [fn(X)] — Y)?]
= Ex, v, 0, |(Ffn(X) = Ep, [fn(X)D? + Bp, [fn(X)] - ¥)?
+2(fn(X) = Ep, [fn (XD (Ep,[fn(X)] = V)|

=Ex.v.p, [(J?n(X) — ]EDn[fn(X)])Q} +Ex,v,p, [(EDn[fn(X)] ~ Y)Q}

\ )
I

variance - how much does the predictor vary about its mean
for different training datasets



Bias — Variance Tradeoff: Derivation

Second term:
Exy |[(Ep,[fn(X)] = Y)?| = Ex v [(Ep,[fn(X)] = F5(X) — €)?]
= Ex,v |(Ep,[fn(X)] = f*(X))? 4 ¢

—2€(Ep, [fn(X)] — £*(X))|

=Ex,v [(EDn[fn(X)] - f*(X))Q] + Ex,v {62}

2By [((Ep, k=T (X))

0 since noise is independent
and zero mean

= Ex,v [(Ep, [fn(3)] = £7(X))?] + Exv [¢]
\ y J \_Y_}
bias”2 - how much does the hoise variance

mean of the predictor differ from the
optimal predictor




Bias — Variance Tradeoff

3 Independent training datasets

Large bias, Small variance — poor approximation but robust/stable

Small bias,

“o 0.1 0.2 03 04 05 06 07 08 09 1 “o 0.1 0.2 03 04 05 06 07 08 09 1 “o 0.1 0.2 03 04 05 06 07 08 09 1



Behavior of True Risk

Want f» to be as good as optimal predictor f*

AN

ExcessRisk R(f) = R(f)= (- R(7) - mLR())+ (inf R(f) - R(f*))

ferx
estimation error approximation error
Due to randomness Due to restriction
of training data of model class
R(fn) J

Estimation

error Excess risk

jay R

Approx. error R*



Behavior of True Risk

feF ferF

N o N 4

R(F) = RO = (BIRG) - i r())+ (ot RO - R

.Y .V

estimation error approximation error

estimation
error

approximation
error

»
»

Complexity of F



Examples of Model Spaces

Model Spaces with increasing complexity:

Nearest-Neighbor classifiers with varying neighborhood sizes k=1,2,3,...
Small neighborhood => Higher complexity

Decision Trees with depth k or with k leaves
Higher depth/ More # leaves => Higher complexity

* Regression with polynomials of order k=0, 1, 2, ...
Higher degree => Higher complexity

Kernel Regression with bandwidth h
Small bandwidth => Higher complexity

How can we select the right complexity model ?



Model Selection

Setup:
Model Classes {Fx}aen of increasing complexity F1 < Fp < ...
min min R
jin min R(f)

We can select the right complexity model in a data-driven/adaptive way:
L Holdout or Cross-validation
O Structural Risk Minimization
d Complexity Regularization

O Information Criteria - AIC, BIC, Minimum Description Length (MDL)



Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:
n data points available D = {X;, Y},

1) Splitinto two sets:  Training dataset ~ Validation dataset NOT ftest
Dy = {X;.Y;}™™, Dy = {X,,Y;}" Data !l

i=m-+1

2) Use D, for training a predictor from each model class:

f\ = arg min R
I agfeglA 7(f)

> Evaluated on training dataset D,



Hold-out method

3) Use Dv to select the model class which has smallest empirical error on D,

X = arg min Ry (f>
g min v ()

|—> Evaluated on validation dataset D,,

4) Hold-out predictor
=15

Intuition: Small error on one set of data will not imply small error on
a randomly sub-sampled second set of data

Ensures method is “stable”



Hold-out method

Drawbacks:

= May not have enough data to afford setting one subset aside for

getting a sense of generalization abilities
= Validation error may be misleading (bad estimate of generalization

error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-
sampling methods at the expense of more computation.



Cross-validation

K-fold cross-validation

1) Create K-fold partition of the dataset.
2) Form K hold-out predictors, each time using one partition as validation and
rest K-1 as training datasets.

K predictors for each model class: { fl, ]/"\2, e fK }

Run 1

Run 2

Run K

Total number of examples

|:| training |:|validation



Cross-validation

Leave-one-out (LOQ) cross-validation

1) Special case of K-fold with K=n partitions
2) Equivalently, train on n-1 samples and validate on only one sample per run

for n runs
K predictors for each model class: { f1, fo, ..., fx }A
|:| training |:|validation
Total number of examples
< >
Run 1 = f1
Run 2 = J?Q

Run K = fK




Cross-validation

Random subsampling

1) Randomly subsample a fixed fraction an (0< a <1) of the dataset for validation.
2) Form hold-out predictor with remaining data as training data.

Repeat K times
K predictors for each model class: { f1, fa,..., fx
|:| training |:|validation
Total number of examples
< >

Run 1 = f1

Run 2 — f2

Run K = fk




Model selection by Cross-validation

3) Use Dv to select the model class which has smallest empirical error on D,
A= Ao 3 Ry

Evaluated on validation
dataset D,,

4) Cross-validated predictor

Final predictor f is average/majority vote over the K hold-out estimates

{ﬁaﬁvafK}X



Estimating generalization error

Hold-out = 1-fold: Error estimate = EV(J/";\)

K A
K-fold/LOO/random Error estimate = E Z Evk(fk,A)

sub-sampling:

We want to estimate the error of a predictor
based on n data points.

If K is large (close to n), bias of error estimate

is small since each training set has close to n
data points.

However, variance of error estimate is high since
each validation set has fewer data points and

}A%vk might deviate a lot from the mean.

Run1

Run 2

Run K

l] training l] validation

Total number of examples




Practical Issues in Cross-validation

How to decide the values for Kand « ?

= largeK
+ The bias of the error estimate will be small (many training pts)
- The variance of the error estimate will be large (few validation pts)
- The computational time will be very large as well (many experiments)

= Small K
+ The # experiments and, therefore, computation time are reduced
+ The variance of the error estimate will be small (many validation pts)
- The bias of the error estimate will be large (few training pts)

Common choice: K=10, a=0.1 ©



Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

ﬁl = a,l'gllli;l{ﬁ,l(f)+C’(f)}

- feF
Bound on deviation from true
risk
With high probability, |R(f) — fin(f)| <C(f) VfeF Concentration bounds

(later)

Prediction #

Error High probability

Upper bound
on true risk

true risk

empirical risk <~ C(f) - large for complex models

— -
- | >~ _
underfitting overfitting Complexity




Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

AN

fn = argmin {Rn(f) (N}

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image Noisy image True Flood plain
(elevation level > x)



Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

fn = argmin {Rn(f) (£}

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain Zero penalty CV penalty Theoretical penalty
(elevation level > x)



Occam’s Razor

William of Ockham (1285-1349) Principle of
Parsimony:

“One should not increase, beyond what is

necessary, the number of entities required to
explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

* Prior information (bias)
* |Information Criterion (MDL, AIC, BIC)




Importance of Domain knowledge

f(@)

Distribution of photon arrivals
P Compton Gamma-Ray Observatory Burst

and Transient Source Experiment (BATSE)



Complexity Regularization

Penalize complex models using prior knowledge.
fn = arg 1;2}_} {Rn(f) + ('(f>}

Cost of model
(log prior)

Bayesian viewpoint:
prior probability of f, p(f) = e~ )
cost is small if fis highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F
= uniform prior on f € F, zero probability for other predictors

g A
In argfrg}pL n(f)



Complexity Regularization

Penalize complex models using prior knowledge.
fo = argmin {ﬁn(f) + C‘(f)}
feF
Cost of model
(log prior)

Examples: MAP estimators
Regularized Linear Regression - Ridge Regression, Lasso

Ovap = arg maxlog p(D|0) +-1og p(6)

> (i = Xi9)2 N1l

Bumap = arg min
I—> Penalize models based

1—=1
on some norm of

How to choose tuning parameter A? Cross-validation regression coefficients



Information Criteria — AIC, BIC

Penalize complex models based on their information content.

fo = argmin {Ba(f)+C(f)}

feF

AIC (Akiake IC) C(f) = # parameters

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily — limits complexity of models
as # training data n become large



Information Criteria - MDL

Penalize complex models based on their information content.

fo = arg;léij;{l?n(f)JrC'(f)}

# bits needed to describe f
MDL (Minimum Description Length) (description length)

Example: Binary Dyadic Decision trees FI = {tree classifiers with k leafs)

Fr — Uk »1 Fi ’:I’ prefix encode each element f of F T
C(f) = 3k — 1 bits

k leaves => 2k — 1 nodes

2k — 1 bits to encode tree structure
+ k bits to encode label of each leaf (0/1)

5 leaves => 9 bits to encode structure



Summary

True and Empirical Risk
Over-fitting
Bias vs Variance tradeoff, Approx err vs Estimation err

Model Selection, Estimating Generalization Error

= Hold-out, K-fold cross-validation
= Structural Risk Minimization
= Complexity Regularization

= |nformation Criteria — AIC, BIC, MDL



