Bias-Variance Tradeoff and Model selection

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781
Oct 1, 2012

True vs. Empirical Risk

True Risk: Target performance measure

Classification – Probability of misclassification $P(f(X) \neq Y)$

Regression – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

performance on a random test point (X,Y)

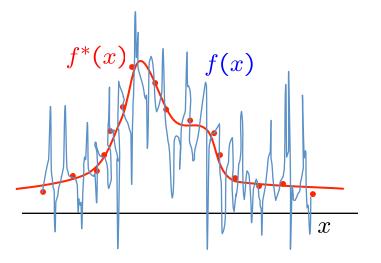
Empirical Risk: Performance on training data

Classification – Proportion of misclassified examples $\frac{1}{n}\sum_{i=1}^n 1_{f(X_i)\neq Y_i}$ Regression – Average Squared Error $\frac{1}{n}\sum_{i=1}^n (f(X_i)-Y_i)^2$

Overfitting

Is the following predictor a good one?

$$f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value,} & \text{otherwise} \end{cases}$$



What is its empirical risk? (performance on training data) zero!

What about true risk?

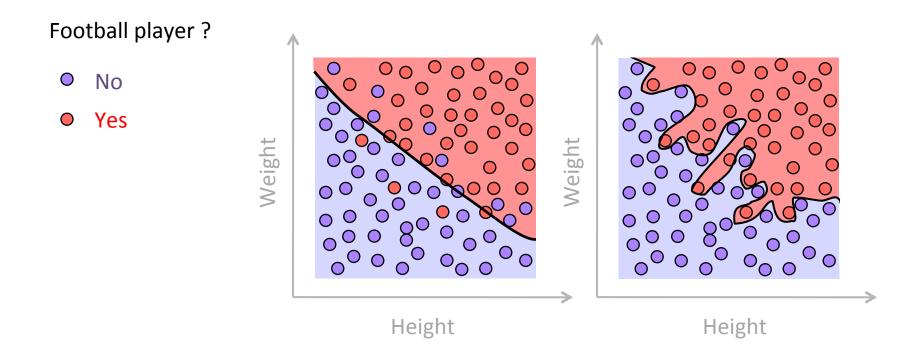
> zero

Will predict very poorly on new random test point: Large generalization error!

Overfitting

If we allow very complicated predictors, we could overfit the training data.

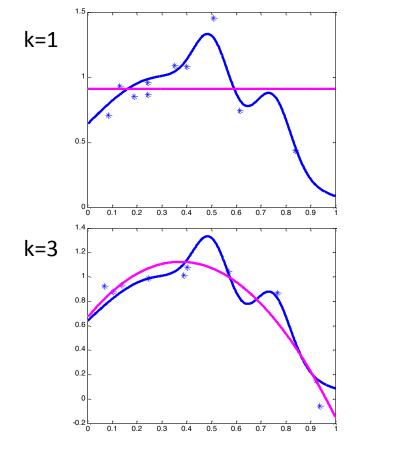
Examples: Classification (0-NN classifier)

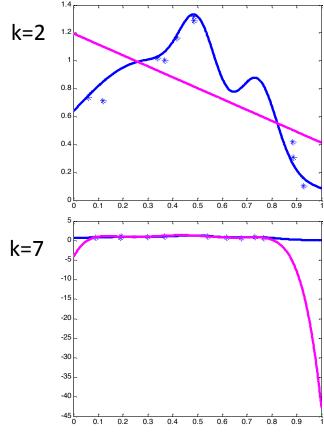


Overfitting

If we allow very complicated predictors, we could overfit the training data.

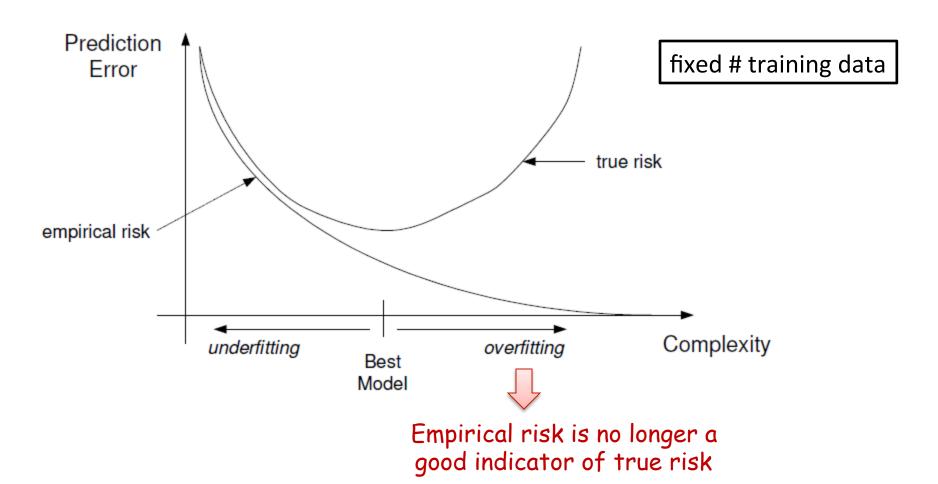
Examples: Regression (Polynomial of order k – degree up to k-1)





Effect of Model Complexity

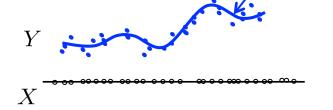
If we allow very complicated predictors, we could overfit the training data.



Behavior of True Risk

$$Y = f^*(X) + \epsilon$$

Regression
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$



True Risk

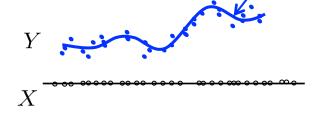
$$R(f) = \mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[(f(X) - \mathbb{E}[f(X)])^2] + \mathbb{E}[(\mathbb{E}[f(X)] - f^*(X))^2] + \sigma^2$$
 Variance Bias Bayes error = R(f*)

Complexity of F

Bias – Variance Tradeoff

Regression:
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$



$$R(f^*) = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$$

Notice: Optimal predictor does not have zero error

$$R(\widehat{f}_n) = \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - Y)^2]$$

 D_n - training data of size n

$$= \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2] + \mathbb{E}_{X,Y}[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X))^2] + \sigma^2$$
variance

bias^2

Noise var

Excess Risk =
$$R(\widehat{f_n}) - R(f^*)$$
 = variance + bias^2
Random component Model restriction

Bias – Variance Tradeoff: Derivation

Regression:
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$R(f^*) = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$$

Notice: Optimal predictor does not have zero error

$$R(\widehat{f}_n) = \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - Y)^2]$$

 D_n - training data of size n

$$= \mathbb{E}_{X,Y,D_n} \left[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)] + \mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \right]$$

$$= \mathbb{E}_{X,Y,D_n} \left[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2 + (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 + 2(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y) \right]$$

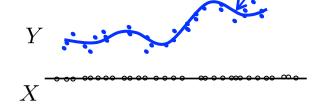
$$= \mathbb{E}_{X,Y,D_n} \left[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2 \right] + \mathbb{E}_{X,Y,D_n} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \right]$$

$$+ \mathbb{E}_{X,Y} \left[2 (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - \mathbb{E}_{D_n}[\widehat{f}_n(X)]) (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y) \right]$$

Bias – Variance Tradeoff: Derivation

Regression:
$$Y = f^*(X) + \epsilon$$
 $\epsilon \sim \mathcal{N}(0, \sigma^2)$

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$



$$R(f^*) = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2$$

Notice: Optimal predictor does not have zero error

$$R(\widehat{f}_n) = \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - Y)^2]$$

 D_n - training data of size n

$$= \mathbb{E}_{X,Y,D_n} \left[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)] + \mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \right]$$

$$= \mathbb{E}_{X,Y,D_n} \left[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2 + (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \right]$$

$$+2(\widehat{f}_n(X)-\mathbb{E}_{D_n}[\widehat{f}_n(X)])(\mathbb{E}_{D_n}[\widehat{f}_n(X)]-Y)\Big]$$

$$= \mathbb{E}_{X,Y,D_n} \left[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2 \right] + \mathbb{E}_{X,Y,D_n} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \right]$$

variance - how much does the predictor vary about its mean for different training datasets

Bias - Variance Tradeoff: Derivation

Second term:

$$\begin{split} \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \right] &= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X) - \epsilon)^2 \right] \\ &= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X))^2 + \epsilon^2 \right. \\ &\left. - 2\epsilon (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X)) \right] \\ &= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] \\ &\left. - 2\mathbb{E}_{X,Y} \left[\epsilon (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X)) \right] \right. \\ & \left. \mathbf{0} \text{ since noise is independent} \end{split}$$

0 since noise is independent and zero mean

noise variance

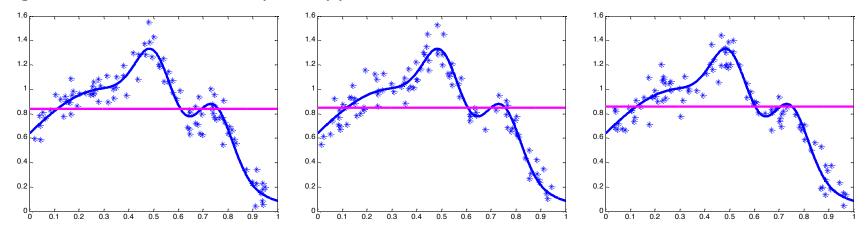
$$= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right]$$

bias² - how much does the mean of the predictor differ from the optimal predictor

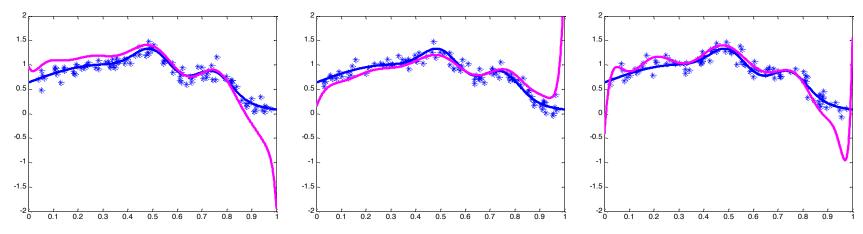
Bias – Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable



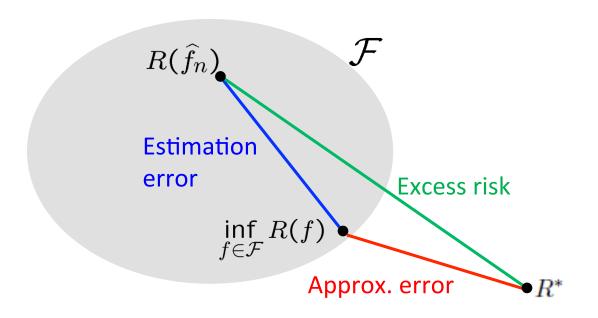
Small bias, Large variance – good approximation but instable



Behavior of True Risk

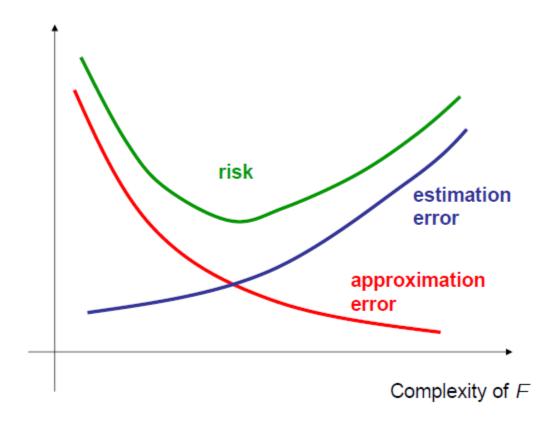
Want \widehat{f}_n to be as good as optimal predictor f^*

Excess Risk
$$R(\widehat{f_n}) - R(f^*) = \underbrace{\left(\begin{array}{cc} R(\widehat{f_n}) - \inf_{f \in \mathcal{F}} R(f) \\ \end{array}\right) + \left(\begin{array}{cc} \inf_{f \in \mathcal{F}} R(f) - R(f^*) \\ \end{array}\right)}_{\text{estimation error}} + \underbrace{\left(\begin{array}{cc} \inf_{f \in \mathcal{F}} R(f) - R(f^*) \\ \end{array}\right)}_{\text{approximation error}}$$
Due to randomness of training data of model class



Behavior of True Risk

$$R(\widehat{f}_n) - R(f^*) = \underbrace{\left(E[R(\widehat{f}_n)] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R(f^*)\right)}_{\text{approximation error}}$$



Examples of Model Spaces

Model Spaces with increasing complexity:

- Nearest-Neighbor classifiers with varying neighborhood sizes k = 1,2,3,...
 Small neighborhood => Higher complexity
- Decision Trees with depth k or with k leaves
 Higher depth/ More # leaves => Higher complexity
- Regression with polynomials of order k = 0, 1, 2, ...
 Higher degree => Higher complexity
- Kernel Regression with bandwidth h
 Small bandwidth => Higher complexity

How can we select the right complexity model?

Model Selection

Setup:

Model Classes $\{\mathcal{F}_{\lambda}\}_{{\lambda}\in{\Lambda}}$ of increasing complexity $\mathcal{F}_1\prec\mathcal{F}_2\prec\dots$

$$\min_{\lambda} \min_{f \in \mathcal{F}_{\lambda}} R(f)$$

We can select the right complexity model in a data-driven/adaptive way:

- ☐ Holdout or Cross-validation
- ☐ Structural Risk Minimization
- ☐ Complexity Regularization
- ☐ *Information Criteria -* AIC, BIC, Minimum Description Length (MDL)

Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

- 1) Split into two sets: Training dataset Validation dataset NOT test $D_T = \{X_i, Y_i\}_{i=1}^m \qquad D_V = \{X_i, Y_i\}_{i=m+1}^n \text{ Data } !!$
- 2) Use D_{τ} for training a predictor from each model class:

$$\widehat{f}_{\lambda} = \arg\min_{f \in \mathcal{F}_{\lambda}} \widehat{R}_{T}(f)$$

Evaluated on training dataset D_{T}

Hold-out method

3) Use Dv to select the model class which has smallest empirical error on D_v

4) Hold-out predictor

$$\widehat{f} = \widehat{f}_{\widehat{\lambda}}$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is "stable"

Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of generalization error) if we get an "unfortunate" split

Limitations of hold-out can be overcome by a family of random subsampling methods at the expense of more computation.

Cross-validation

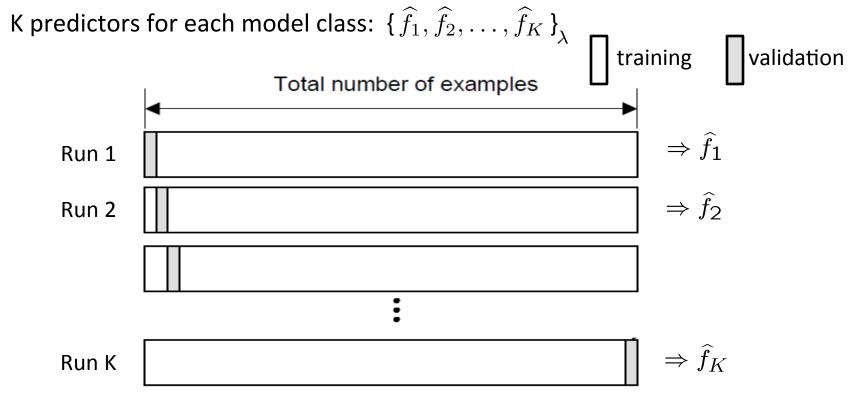
K-fold cross-validation

- 1) Create K-fold partition of the dataset.
- 2) Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.

Cross-validation

Leave-one-out (LOO) cross-validation

- 1) Special case of K-fold with K=n partitions
- 2) Equivalently, train on n-1 samples and validate on only one sample per run for n runs

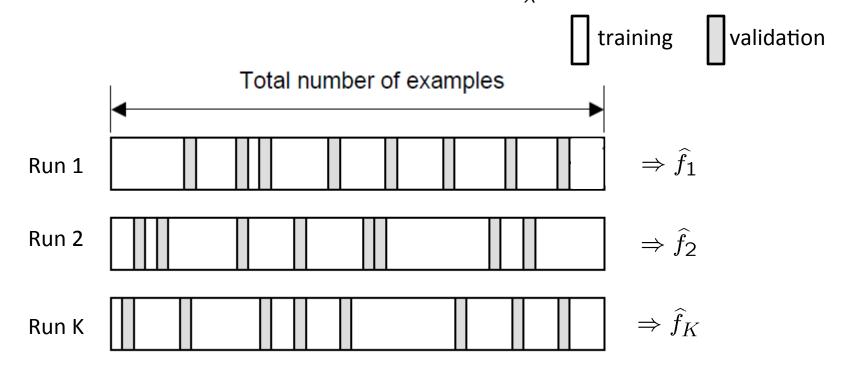


Cross-validation

Random subsampling

- 1) Randomly subsample a fixed fraction αn (0< α <1) of the dataset for validation.
- 2) Form hold-out predictor with remaining data as training data. Repeat K times

K predictors for each model class: { $\widehat{f}_1,\widehat{f}_2,\ldots,\widehat{f}_K$ }



Model selection by Cross-validation

3) Use Dv to select the model class which has smallest empirical error on D_v

$$\widehat{\lambda} = \arg\min_{\lambda \in \Lambda} \frac{1}{K} \sum_{k=1}^K \widehat{R}_{V_k}(\widehat{f}_{k,\lambda})$$
 Evaluated on validation dataset D_V

4) Cross-validated predictor

Final predictor \widehat{f} is average/majority vote over the K hold-out estimates

$$\{ \widehat{f}_1, \widehat{f}_2, \dots, \widehat{f}_K \}_{\widehat{\lambda}}$$

Estimating generalization error

Hold-out = 1-fold: Error estimate =
$$\widehat{R}_V(\widehat{f}_{\lambda})$$

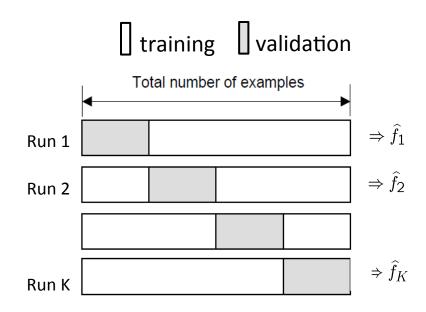
K-fold/LOO/random sub-sampling:

Error estimate =
$$\frac{1}{K} \sum_{k=1}^{K} \widehat{R}_{V_k}(\widehat{f}_{k,\lambda})$$

We want to estimate the error of a predictor based on n data points.

If K is large (close to n), bias of error estimate is small since each training set has close to n data points.

However, variance of error estimate is high since each validation set has fewer data points and \widehat{R}_{V_k} might deviate a lot from the mean.



Practical Issues in Cross-validation

How to decide the values for K and α ?

- Large K
 - + The bias of the error estimate will be small (many training pts)
 - The variance of the error estimate will be large (few validation pts)
 - The computational time will be very large as well (many experiments)
- Small K
 - + The # experiments and, therefore, computation time are reduced
 - + The variance of the error estimate will be small (many validation pts)
 - The bias of the error estimate will be large (few training pts)

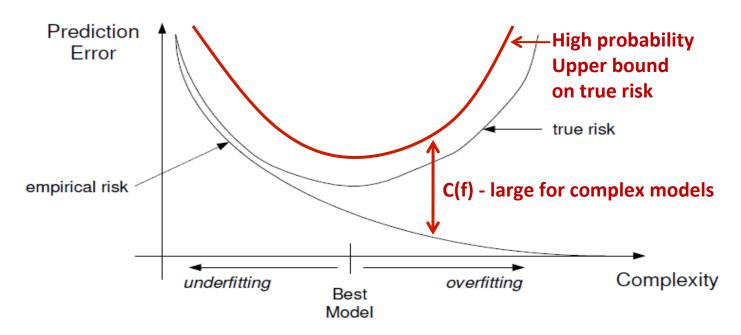
Common choice: K = 10, α = 0.1 \odot

Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
 Bound on deviation from true risk

With high probability, $|R(f) - \widehat{R}_n(f)| \le C(f)$ $\forall f \in \mathcal{F}$ Concentration bounds (later)



Structural Risk Minimization

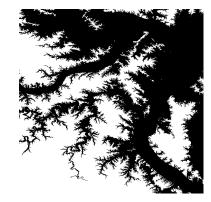
Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + \lambda \mathcal{C}(f) \right\}$$
Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image

Noisy image



True Flood plain (elevation level > x)

Structural Risk Minimization

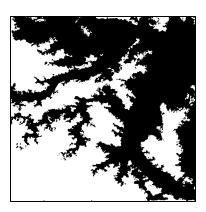
Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + \lambda C(f) \right\}$$
Choose by cross-validation!

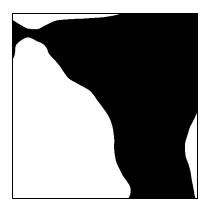
Problem: Identify flood plain from noisy satellite images

True Flood plain (elevation level > x)

Zero penalty



CV penalty



Theoretical penalty

Occam's Razor

William of Ockham (1285-1349) *Principle of Parsimony:*

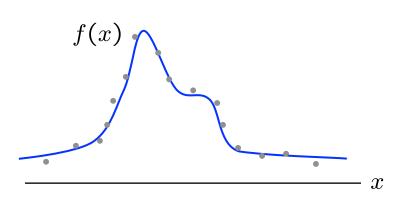
"One should not increase, beyond what is necessary, the number of entities required to explain anything."

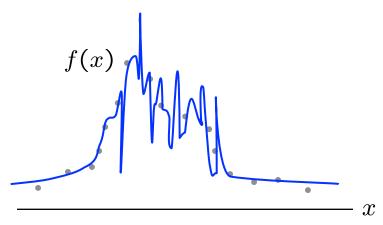
Alternatively, seek the simplest explanation.

Penalize complex models based on

- Prior information (bias)
- Information Criterion (MDL, AIC, BIC)

Importance of Domain knowledge





Distribution of photon arrivals

Oil Spill Contamination

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)

Complexity Regularization

Penalize complex models using prior knowledge.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Cost of model (log prior)

Bayesian viewpoint:

prior probability of f, $p(f) \equiv e^{-C(f)}$

cost is small if f is highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F \equiv uniform prior on $f \in F$, zero probability for other predictors

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \widehat{R}_n(f)$$

Complexity Regularization

Penalize complex models using prior knowledge.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Cost of model (log prior)

Examples: MAP estimators

Regularized Linear Regression - Ridge Regression, Lasso

$$\widehat{\theta}_{\mathsf{MAP}} = \arg \max_{\theta} \log p(D|\theta) + \log p(\theta)$$

$$\widehat{\theta}_{\mathsf{MAP}} = \arg\max_{\theta} \log p(D|\theta) + \log p(\theta)$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i\beta)^2 + \lambda \|\beta\|$$

How to choose tuning parameter λ ? Cross-validation

Penalize models based on some norm of regression coefficients

Information Criteria – AIC, BIC

Penalize complex models based on their information content.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

AIC (Akiake IC) C(f) = # parameters

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily – limits complexity of models as # training data n become large

Information Criteria - MDL

Penalize complex models based on their information content.

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$
bits needed to describe f

MDL (Minimum Description Length)

Example: Binary Dyadic Decision trees $\mathcal{F}_k^T = \{ \text{tree classifiers with } k \text{ leafs} \}$

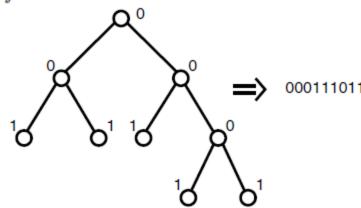
$$\mathcal{F}^T = \bigcup_{k \geq 1} \mathcal{F}_k^T$$
 prefix encode each element f of \mathcal{F}^T

$$C(f) = 3k - 1$$
 bits

k leaves => 2k - 1 nodes

2k – 1 bits to encode tree structure

+ k bits to encode label of each leaf (0/1)



(description length)

5 leaves => 9 bits to encode structure

Summary

True and Empirical Risk

Over-fitting

Bias vs Variance tradeoff, Approx err vs Estimation err

Model Selection, Estimating Generalization Error

- Hold-out, K-fold cross-validation
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria AIC, BIC, MDL