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At Pittsburgh G-20 summit ...




Linear classifiers — which line is
better?




Pick the one with the largest margin!



Parameterizing the decision boundary
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Parameterizing the decision boundary
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Maximizing the margin
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Maximizing the margin

w.Xx+b>0 w.Xx+b<0
alx Distance between examples
o = closest to the line/hyperplane
- =
iy = = |margin=2y=2a/|w]|
iy X
s - Proof sketch:
~— = 1) wis perpendicular to line
" Y _ _ <W,X;-X,>=0 if X,,X, on line
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sincew.x*+b=a,wx+b=-a
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Maximizing the margin
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Support Vector Machines
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wXxX+b>0

Support Vectors
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Linear hyperplane defined by
“support vectors”

i: (wx+b)y =1

Moving other points a little
doesn’t effect the decision
boundary

only need to store the
support vectors to predict
labels of new points

How many support vectors
in linearly separable case?
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What if data is not linearly separable?
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What if data is still not linearly
separable?

Allow “error” in classification
min w.w + C tmistakes
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* 0/1 loss (doesn’t distinguish between
near miss and bad mistake) e



What if data is still not linearly
separable?

Allow “error” in classification

Soft margin approach

min ww+CZE
w,b,§;

st(wx+b)yJ 1-§ V]
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G - “slack” variables
(>1 if x; misclassifed)
pay linear penalty if mistake

C - tradeoff parameter (chosen by
cross-validation)

stillQP ©
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Soft-margin SVM

9 O<fj<1

Soften the constraints:

(w.x;+b) y; 2 1-¢ V]
=20 V]

Penalty for misclassifying:
C§

How do we recover hard
margin SVM?
SetC=o0
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Support Vectors

Soften the constraints:

(w.x;+b) y; 2 1-¢ V]
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Penalty for misclassifying:
C§

How do we recover hard
margin SVM?
SetC=o0
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Slack variables as Hinge loss

Regularized loss
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0-1 loss
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SVM vs. Logistic Regression

SVM : Hinge loss
loss(f(zj),y;) = (1 —(w-z; +0)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)

Log loss \\ Hinge loss

0-1 loss

-1 0 1 (W-z; +b)y;
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What about multiple classes?
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One against all

Learn 3 classifiers
separately:
Class k vs. rest

(w,, bk)k=1,2,3

y =arg mEx w,.X + b,

But w,s may not be
based on the same scale.
Note: (aw).x + (ab) is also
a solution
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss

Relationship between SVMs and logistic regression
— 0/1 loss

— Hinge loss

— Log loss

Tackling multiple class

— One against All

— Multiclass SVMs
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