Support Vector Machines

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781 Oct 3, 2012

At Pittsburgh G-20 summit ...

Linear classifiers – which line is better?

Pick the one with the largest margin!

Parameterizing the decision boundary

Parameterizing the decision boundary

Maximizing the margin

Maximizing the margin

Maximizing the margin

Support Vector Machines

Support Vectors

Linear hyperplane defined by "support vectors"

i:
$$(w.x_i+b) y_i = 1$$

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

How many support vectors in linearly separable case?

What if data is not linearly separable?

What if data is still not linearly separable?

Allow "error" in classification

min w.w + C #mistakes
s.t.
$$(\mathbf{w}.\mathbf{x}_j+b)$$
 $y_j \ge 1$ $\forall j$

Maximize margin and minimize # mistakes on training data

C - tradeoff parameter

- Not QP ☺
- 0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is still not linearly separable?

Allow "error" in classification

Soft margin approach

$$\min_{\mathbf{w},b,\xi_{j}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Soft-margin SVM

Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \mathbf{y}_{j} \ge 1-\xi_{j} \quad \forall \mathbf{j}$$
$$\xi_{j} \ge 0 \quad \forall \mathbf{j}$$

Penalty for misclassifying:

$$C \xi_i$$

How do we recover hard margin SVM?

Support Vectors

Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \mathbf{y}_{j} \ge 1-\xi_{j} \quad \forall \mathbf{j}$$
$$\xi_{j} \ge 0 \quad \forall \mathbf{j}$$

Penalty for misclassifying:

$$C \xi_i$$

How do we recover hard margin SVM?

Slack variables as Hinge loss

Regularized loss

$$\xi_j = \operatorname{loss}(f(x_j), y_j)$$

$$f(x_j) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x_j} + \mathbf{b})$$

$$\min_{\mathbf{w},b,\xi_{j}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{j} \ge 0 \quad \forall j$$

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Hinge loss

SVM vs. Logistic Regression

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j)_{+}$$

Logistic Regression: Log loss (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

What about multiple classes?

One against all

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

$$\begin{aligned} & \text{minimize}_{\mathbf{w},b} \quad \sum_{y} \mathbf{w}^{(y)}.\mathbf{w}^{(y)} \\ & \text{s.t. } \mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \geq \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \neq y_j, \ \forall j \end{aligned}$$

Margin - gap between correct class and nearest other class

y = arg max
$$\mathbf{w}^{(k)}.x + b^{(k)}$$

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - -0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs