Support Vector Machines

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781
Oct 8§, 2012

ACHI

SVMs reminder

Soft margin approach

Regularization Hinge loss

| 1
I 1 I 1

min w.w + C 2§,
w,b,&;

s.t. (w.xi+b) y; 2 1-§ V]
20 V]

Hard margin approach: C = o°

Why not C=07

How does C control model
complexity?

25

Margin — 2 class vs multi-class

2 class SVM.

Confidence = Distance from
decision boundary

wW-X;+b

y =sign(w - X + b)

26

Margin — 2 class vs multi-class

2 class SVM.

Confidence = Distance from
decision boundary

wW-X;+b

Multi-class SVM.:

Confidence = Gap between
distance to correct class and
nearest other class y = arg max wkl.x + b

wli) . x; +b— (w) . x; 4+ b) What does decision
boundary look like?

Support Vectors — Hard margin SVM

wXxX+b>0

wX+b<0

Linear hyperplane defined by
“support vectors”

ir (wx+b)y =1

Moving other points a little
doesn’t effect the decision
boundary

28

Support vectors - Soft-margin SVM

9 O<fj<1

Linear hyperplane defined by
“support vectors”

ir (w.x+b)y. = 1-¢

Moving other points a little
doesn’t effect the decision
boundary

29

Today’s Lecture

e Learn one of the most interesting and exciting
advancements in machine learning

— The “kernel trick”

— High dimensional feature spaces at no extra cost!

e But first, a detour
— Constrained optimization!

Constrained Optimization

min, z2
s.t. x>0

P
I

e

e

wn ‘/
/

¥ =0

Constraint inactive

N

Mmin, x

wn

c—'-
S
INAVA

|_\

]
1
\ 1
\ 1
! 1
1
\ 1
\
1 /
\ i /
\ 1 /
\ 1 /
\,\ 1 y
\ 1 f,-’
‘\I I /
\\ 1 /f
N e,
\ 4
¥
AN pd
1
1
1
. 1
~ .,)
0s 1 5
r* =1

Constraint active

31

Constrained Optimization

min f(x) Convex optimization if
f, g are convex
st.g(z) <0 h is affine
h(x) =0

Lagrange dual function:

L(z,a,B) = f(x) +ag(x)+ Bh(x) «a>0,5 :Lagrange

multipliers
Lemma:
B (x) if z is feasible
og%?%ﬁ(x’&’ﬁ) - { o0 otherwise

32

Constrained Optimization

min f(x)
s.t. g(x) <0 = R 155 L(z, o, P)
h(z) =0

Lagrange dual function:

L(z,a,B) = f(x) +ag(x)+ Bh(x) «a>0,5 :Lagrange

multipliers
Lemma:
B (x) if z is feasible
og%?%ﬁ(x’&’ﬁ) - { o0 otherwise

33

Primal and Dual problems

Primal problem:

min f(x)
s.t. g(x) <0 = min max L(z,a, f)
h(x) =0
Dual problem: Ofrzl%?‘fﬁ mxinﬁ(x, a, [3)
Weak duality:

d* = max min L(z, o,) < min max L(x,«a,) =p*

Q{ZO,B X L O‘ZOaB

34

Strong Duality & KKT conditions

Strong duality:

*

d* = = L
max ma}nﬁ(:v a, 3) mwmogl%?% (x,,8) =p

Holds if primal solution ™ and dual solution (a™, 87) satisfy
KKT (Karush-Kunh-Tucker) conditions:

VLT, ot) =0 o >0=g(z*) =0

Constraint is active

Constraint not active
g(z*) <0=a" =0

35

Strong Duality & KKT conditions

always
Strong duality: —
KKT conditions hold
for convex

optimization

For constrained convex optimization, primal and dual
problems are equivalent.

36

Dual SVM - linearly separable case

* Primal problem: minimizey, %W.W

(W.Xj —+ b) y; > 1, Vg

w - weights on features

e Dual problem:
Lagrangian dual function
L(w,b,a) = %W.W — > [(W.Xj + b) Y — 1}

Oéj Z O, \V/]
o - weights on training pts

37

Dual SVM - linearly separable case

* Dual problem:

MaXq MiNg p L(W, b, o) = %W.W — 2.5 QO [(W.Xj + b) Yj — 1}

OéjZO, V]

oL

oL
%20 :>Zozjyj=0

38

Dual SVM - linearly separable case

L 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;0GY;Y XX

D i Oy =
047; > O

Dual problem is also QP

W=) oYX,

(2

Solution gives as

b=y — W.Xp

for any k where a5 > 0

Use support vectors to compute b

Dual SVM - non-separable case

* Primal problem:
minimizey, , sw.w+CY,&;

(wx;+b)y; >1—¢, Vj &
§; 20, Vj Hj
Lagrange
* Dual problem: Multipliers

MaXeq,, Ming 5 L(wW, b, a, 1)
st.a; >0 Vg
pi >0 Vj

40

Dual SVM - non-separable case

L 1
MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X

2. oy = 0
Pt
oL Intuition:
comes from oy 0 Earlier - If constraint violated, o, oo

Now - If constraint violated, o, < C (effect
of a point on line (w) is bounded

Dual problem is also QP W = Z QY X
(/
b= Y — W.XL

for any k where C' > ap. > 0

Solution gives a;s >

Dual SVM Interpretation: Sparsity

W=) ajyiX;
;

Only few ays can be
non-zero : where
constraint is tight

(w.x; + by, = 1

Support vectors —
training points j whose
QS are non-zero

42

So why solve the dual SVM?

* There are some quadratic programming
algorithms that can solve the dual faster than
the primal, specially in high dimensions m>>n

* But, more importantly, the “kernel trick”!!!

43

What if data is not linearly separable?

Use features of features
of features of features....

D(x) = (X2, X2, XXy, -..., €XP(X4))

44

Non-linearly separable case

LT
> 3 N N
><N | |
T 4 === e o -

X4 X1
+ + B
+ |
+ | |

I
[
10

] |

1)

+

0
+4++++++

45

What if data is not linearly separable?

Use features of features
of features of features....

D(x) = (X2, X2, XXy, -..., €XP(X4))

Feature space becomes really large very quickly!

46

num. terms :<

800

700

600 |-

500

400 |

300

200

100 |

Higher Order Polynomials

m — input features

d+m—1
d

d — degree of polynomial

 d'(m —1)!

grows fast!
d=6,m=100
about 1.6 billion terms

47

Dual formulation only depends on
dot-products, not on w!

" 1
MaXxXimliZeqy ZZ Q; — 5 Zz,] Q0 Y;Y XX

—
> ioyy; =0
CZCYZ'ZO

U

maximizea ;o — 5 Y aioyiyi K (x4, %)
*
K(x;,x;) = P(x;) - P(x5)

2.y = 0
CZ(XZ'ZO

®O(x) — High-dimensional feature space, but never need it explicitly as long

as we can compute the dot product fast using some Kernel K v

Common Kernels

Polynomials of degree d

Ku,v) = (u-v)?

Polynomials of degree up to d

K(u,v) = (u-v+ 1)

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion)

K(u,v) = exp (-1 ""2>

D52

Sigmoid
K(u,v) =tanh(nu-v +v)

49

Dot Product of Polynomials

d(x) = polynomials of degree exactly d
o] = ln)
X —= 7 —
i) V)

d=1 &(x) d(z) = [i; ” “1] — 2121+ X020 = X2

2 2

L7 1

d=2 o (x) - ®(2) = | V2z125 |- | V22120 | = %27 + 2325 + 21202120
x5 25

(121 + 2020)°

(x-2)?

d D) -P(z)=K(xz) = (x-2)*

50

Finally: The Kernel Trick!

- 1
maximizes ;o — 53 5 oy K (%4, %X,)

K(x;,x;) = P(x;) - P(x5)

>iay; = 0
CZO(Z'>O

Never represent features explicitly
— Compute dot products in closed form

Constant-time high-dimensional dot-
products for many classes of features

Very interesting theory — Reproducing
Kernel Hilbert Spaces

— Not covered in detail in 10701/15781, more
in 10702

w =) oy;P(x;)
i

b=y — W.P(xg)

for any kK where C > a5 >0

51

Overfitting

 Huge feature space with kernels, what about
overfitting???
— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting

What about classification time?

w =) oy;P(x;)
P

b=y — W.P(xg)

for any kK where C > a5 > 0

* For anew input x, if we need to represent ®(x), we are in trouble!

e Recall classifier: sign(w.®(x)+b)

e Using kernels we are cool!

K(u,v) = d(u) - (v)

53

SVMs with Kernels

* Choose a set of features and kernel function

* Solve dual problem to obtain support vectors o,

e At classification time, compute:

w-P(x) = Z oy K (X, %;)

b=yr— > oy K(xp,x;)

{
for any k where C > a;. > 0

m sign (w - P(x) + b)

54

SVMs vs. Kernel Regression

SVMs Kernel Regression
sign (w - P(x) + b) S K (. x0)
o o <@<<D>

sign (ZiK(X, x;) + b)

Differences:

* SVMs:
— Learn weights o,
— Often sparse solution
* KR:
— Fixed “weights”
— Solution may not be sparse
— Much simpler to implement

SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels

Kernels in Logistic Regression

1

P =1]zw) = - T o~ (W) +b)

* Define weights in terms of features:
w =) o;P(x;)
i

1
1 4 e~ (i i ®(x)- P (x)+D)
1
1+ e_(Zi OziK(X,Xi)+b)

PlY=1|z,w) =

* Derive simple gradient descent rule on o.

57

SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels

Solution sparse

Semantics of
output

58

What you need to know...

Dual SVM formulation

— How it’s derived
The kernel trick

Common kernels

Differences between SVMs and kernel regression

Differences between SVMs and logistic regression

Kernelized logistic regression

59

