Active Learning

Burr Settles

Machine Learning 10-701 / 15-781 Nov 14, 2012

Let's Play 20 Questions!

• I'm thinking of something; ask me yes/no questions to figure out what it is...

How Do We *Automate* Inquiry? A Though Experiment

A Thought Experiment

 suppose you are on an Earth convoy sent to colonize planet Zelgon

people who ate the round Zelgian fruits found them *tasty!*

people who ate the rough Zelgian fruits found them *gross!*

Poisonous vs. Yummy Alien Fruits

 there is a continuous range of round-to-rough fruit shapes on Zelgon:

you need to learn how to classify fruits as safe or noxious

and you need to do this while risking as little as possible (i.e., colonist health)

Supervised Learning Approach

problem:

PAC theory tells us we need $O(1/\epsilon)$ tests to obtain an error rate of ϵ ...

a lot of people might get sick in the process!

Can We Do Better?

this is just a binary search...

requiring $O(1/\epsilon)$ fruits (e.g., samples) but only $O(\log_2 1/\epsilon)$ tests (e.g., queries)

our first "active learning" algorithm!

Supervised Learning

supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

Active Learning

active learner induces a classifier

expert / oracle analyzes experiments to determine labels

Learning Curves

Who Uses Active Learning?

Sentiment analysis for blogs; Noisy relabeling

- Prem Melville

Biomedical NLP & IR; Computer-aided diagnosis

Balaji Krishnapuram

MS Outlook voicemail plug-in [Kapoor et al., IJCAI'07]; "A variety of prototypes that are in use throughout the company." – *Eric Horvitz*

"While I can confirm that we're using active learning in earnest on many problem areas... I really can't provide any more details than that. Sorry to be so opaque!"

- David Cohn

Active Learning Scenarios

membership query synthesis model generates a query de novo stream-based selective sampling instance space or input distribution pool-based active learning pool-based active learning sample a large pool of instances model selects the best query

Problems with Query Synthesis

an early real-world application: neural-net queries synthesized for handwritten digits [Lang & Baum, 1992]

problem: humans couldn't interpret the queries!

ideally, we can ensure that the queries come from the underlying "natural" distribution

Active Learning Scenarios

Active Learning Approaches (1) Uncertainty Sampling

Zelgian Fruits Revisited

 let's interpret our Zelgian fruit binary search in terms of a probabilistic classifier:

Uncertainty Sampling

query instances the learner is most uncertain about

Common Uncertainty Measures

least confident

$$\phi_{LC}(x) = 1 - P_{\theta}(y^*|x)$$

margin

$$\phi_M(x) = P_{\theta}(y_1^*|x) - P_{\theta}(y_2^*|x)$$

entropy

$$\phi_{ENT}(x) = -\sum_{y} P_{\theta}(y|x) \log_2 P_{\theta}(y|x)$$

Common Uncertainty Measures

note: for binary tasks, these are functionally equivalent!

Common Uncertainty Measures

illustration of preferred (dark red) posterior distributions in a 3-label classification task

note: for multi-class tasks, these are not equivalent!

Information-Theoretic Interpretation

• the "surprisal" \mathcal{I} is a measure (in bits, nats, etc.) of the information content for outcome y of variable Y:

$$\mathcal{I}(y) = \log \frac{1}{P(y)} = -\log P(y)$$

- so this is how "informative" the oracle's label y will be
- but the learner doesn't know the oracle's answer yet! we can estimate it as an *expectation* over all possible labels:

$$E_y \left[-\log P_{\theta}(y|x) \right] = -\sum_y P_{\theta}(y|x) \log P_{\theta}(y|x)$$

which is entropy-based uncertainty sampling

Uncertainty Sampling in Practice

- pool-based active learning:
 - evaluate each x in \mathcal{U}
 - rank and query the top K instances
 - retrain, repeat
- selective sampling:
 - threshold a "region of uncertainty," e.g., [0.2, 0.8]
 - observe new instances, but only query those that fall within the region
 - retrain, repeat

Uncertainty Sampling: Example

target function

neural net trained from 100 random pixels

active neural net (stream-based uncertainty sampling)

Simple and Widely-Used

- text classification
 - Lewis & Gale ICML'94;
- POS tagging
 - Dagan & Engelson, ICML'95;
 Ringger et al., ACL'07
- disambiguation
 - Fujii et al., CL'98;
- parsing
 - Hwa, CL' 04

- information extraction
 - Scheffer et al., CAIDA'01;Settles & Craven, EMNLP'08
- word segmentation
 - Sassano, ACL'02
- speech recognition
 - Tur et al., SC'05
- transliteration
 - Kuo et al., ACL'06
- translation
 - Haffari et al., NAACL'09

Uncertainty Sampling: Failure?!

20 40 60 80 100

active neural net (stream-based uncertainty sampling)

What To Do?

- uncertainty sampling only uses the confidence of one single classifier
 - e.g., a "point estimate" for parametric models
 - this classifier can become overly confident about instances is really knows nothing about!
- instead, let's consider a different notion of "uncertainty"... about the *classifier itself*

Active Learning Approaches (2) Hypothesis Space Search

Remember Version Spaces?

 the set of all classifiers that are consistent with the labeled training data

• the larger the version space \mathcal{V} , the less likely each possible classifier is... we want queries to *reduce* $|\mathcal{V}|$

Alien Fruits Revisited

 let's try interpreting our binary search in terms of a version space search:

possible classifiers (thresholds): 1

Version Space Search

- in general, the version space $\mathcal V$ may be too large to enumerate, or to measure the size $|\mathcal V|$ through analytical trickery
- observation: for the Zelgian fruits example, uncertainty sampling and version space search gave us the same queries!
- how far can uncertainty sampling get us?

Version Spaces for SVMs

"version space duality" (Vapnik, 1998)

points in \mathcal{F} correspond to hyperplanes in $\ensuremath{\mathcal{H}}$ and vice versa

SVM with largest margin is the center of the largest hypersphere in ${\cal V}$

 \mathcal{H} (hypothesis space)

Bisecting the SVM Version Space

 hence, uncertainty sampling is a special case of version space search for SVMs (and other so-called "max-margin" classifiers)

Query By Disagreement (QBD)

- in general, uncertainty doesn't cut it
- idea: we wish to quickly eliminate bad hypotheses; train two classifiers G and S which represent the two "extremes" of the version space
- if these two models disagree, the instances falls within the "region of uncertainty"

Neural Network Triangles Revisited

initial sample

QBD:

uncertainty sampling:

Query By Committee (QBC)

- simpler, more general approach
- train a committee of classifiers $\mathcal C$
 - no need to maintain G and S
 - committee can be any size
- query instances for which committee members disagree

QBC in Practice

- selective sampling:
 - train a committee ${\cal C}$
 - observe new instances, but only query those for which there is disacreement (or a lot of disagreement)
 - retrain, repeat
- pool-based active learning:
 - train a committee $\mathcal C$
 - measure disagreement for each x in \mathcal{U}
 - rank and query the top K instances
 - retrain, repeat

QBC Design Decisions

- how to build a committee:
 - "sample" models from $P(\theta|\mathcal{L})$
 - [Dagan & Engelson, ICML'95; McCallum & Nigam, ICML'98]
 - standard ensembles (e.g., boosting, bagging)
 - [Abe & Mamitsuka, ICML'98]
- how to measure disagreement (many):
 - "XOR" committee classifications
 - view vote distributions as probabilities, use uncertainty measures...

QBC Disagreement Measures

"soft" vote entropy:

$$x_{SVE}^* = \underset{x}{\operatorname{argmax}} - \sum_{y} P_{\mathcal{C}}(y|x) \log P_{\mathcal{C}}(y|x)$$

average Kullback-Liebler (KL) divergence:

$$x_{KL}^* = \operatorname*{argmax}_{x} \frac{1}{|\mathcal{C}|} \sum_{\theta \in \mathcal{C}} KL(P_{\theta}(Y|x) \parallel P_{\mathcal{C}}(Y|x))$$

QBC Disagreement Measures

heatmaps illustrating query heuristics for a 3-label classification task using multinomial logistic regression (e.g., a MaxEnt model)

QBC Disagreement Measures

confident hypotheses; but in *dis*agreement

Information-Theoretic Interpretation

- we want to query the instance whose label contains maximal mutual information about the version space: $I(Y; \mathcal{V})$
- consider the identity:

$$egin{array}{lll} I(Y;\mathcal{V}) &=& H(\mathcal{V}) - H(\mathcal{V}|Y) \\ &=& H(\mathcal{V}) - \mathbb{E}_Y ig[H(\mathcal{V}|y) ig] \end{array}$$

• this justifies querying instances which will reduce $|\mathcal{V}| \approx H(\mathcal{V})$ in expectation

Information-Theoretic Interpretation

an alternate, equivalent identity:

$$I(Y; \mathcal{V}) = KL(P(Y, \mathcal{V}) \parallel P(Y)P(\mathcal{V}))$$
$$= \mathbb{E}_{\theta \in \mathcal{V}} \left[KL(P_{\theta}(Y) \parallel P(Y)) \right]$$

which, under a few simple assumptions,
 reduces to the KL-divergence heuristic for QBC

Limitations of Version Space Search

imagine Zelgon has both grey and red fruits, with different thresholds?

there are two queries ${\bf A}$ and ${\bf B}$ both bisect ${\cal V}$

which query will result is the lowest *classification error*?

Active Learning Approaches (3) Using the Data Distribution

Expected Error Reduction

• minimize the expected 1/0 loss of a query \boldsymbol{x}

$$x_{ER}^* = \underset{x}{\operatorname{argmin}} \ \mathbb{E}_{Y|\theta,x} \left[\sum_{x' \in \mathcal{U}} \mathbb{E}_{Y|\theta^+,x'}[y \neq \hat{y}] \right]$$

$$= \underset{x}{\operatorname{argmin}} \sum_{y} P_{\theta}(y|x) \left[\sum_{x' \in \mathcal{U}} 1 - p_{\theta^+}(\hat{y}|x') \right]$$
 expectation over sum over possible labelings of x unlabeled instances after retraining with x

Expected Error Reduction

• minimize the expected log loss of a query x

$$\begin{array}{lll} x_{LL}^* &=& \displaystyle \operatorname*{argmin}_x \ \mathbb{E}_{Y|\theta,x} \left[\sum_{x' \in \mathcal{U}} \mathbb{E}_{Y|\theta^+,x'} [-\log p_{\theta^+}(y|x')] \right] \\ &=& \displaystyle \operatorname*{argmin}_x \sum_y P_{\theta}(y|x) \left[\sum_{x' \in \mathcal{U}} -\sum_{y'} p_{\theta^+}(y'|x') \log p_{\theta^+}(y'|x') \right] \\ &=& \displaystyle \operatorname*{argmin}_x \sum_y P_{\theta}(y|x) \sum_{x' \in \mathcal{U}} H_{\theta^+}(Y|x'), \\ &=& \displaystyle \operatorname*{expectation over}_{\text{labelings of } x} \sup_{\text{unlabeled instances}} \sup_{\text{after retraining with } x} \end{array}$$

Text Classification Examples

Text Classification Examples

comp.sys.ibm.pc.hardware vs. comp.os.ms-windows.misc

Information-Theoretic Interpretation

• aim to maximize the *information gain* over ${\cal U}$

uncertainty before query expected loss
$$x^* = \underset{x}{\operatorname{argmax}} \sum_{x' \in \mathcal{U}} \left(H_{\theta}(Y|x') - \mathbb{E}_{Y|\theta,x} \big[H_{\theta^+}(Y|x') \big] \right)$$
 distribute the sum
$$= \underset{x}{\operatorname{argmax}} \sum_{x' \in \mathcal{U}} H_{\theta}(Y|x') - \sum_{x' \in \mathcal{U}} \mathbb{E}_{Y|\theta,x} \big[H_{\theta^+}(Y|x') \big]$$
 drop this constant term
$$= \underset{x}{\operatorname{argmin}} \sum_{x' \in \mathcal{U}} \mathbb{E}_{Y|\theta,x} \big[H_{\theta^+}(Y|x') \big].$$

Poor Scalability

 expected error reduction tries to directly optimize the loss of interest, but...

- quickly becomes intractible
 - logistic regression requires O(ULG) time
 - MaxEnt would require $O(M^2ULG)$ time

Approximation: Density-Weighting

• assume that the information gained per unlabeled instance x' is proportional to its similarity to the query x:

$$\begin{array}{lcl} x^* & = & \displaystyle \operatorname*{argmax}_x \; \sum_{x' \in \mathcal{U}} \Big(H_{\theta}(Y|x') - \mathbb{E}_{Y|\theta,x} \big[H_{\theta^+}(Y|x') \big] \Big) \\ \\ & \approx & \displaystyle \operatorname*{argmax}_x \; \sum_{x' \in \mathcal{U}} \Big(\mathrm{sim}(x,x') \times H_{\theta}(Y|x) \Big). \\ \\ & & \uparrow \qquad \qquad \uparrow \\ \\ & & \text{density term} \qquad \text{"base" utility} \\ \text{(i.e., similarity)} & & \text{measure} \end{array}$$

Active Learning++ Beyond Instance Queries

Beyond Instance Queries

- most research in active learning has been based on a few simple assumptions:
 - "cost" is proportional to training set size
 - queries must be unlabeled instances
 - there is only a single classifier to train

1. Real Annotation Costs

empirical study of time as labeling cost for four data sets:

[Results supported by Aurora et al., ALNLP'09; Vijayanarasimhan & Grauman, CVPR'09]

Strategies for Variable Annotation Costs

- use the current trained model assist with automatic pre-annotation
 - some successes [Baldridge & Osbourne '04; Culotta & McCallum '05; Baldridge & Palmer '09; Felt et al. '12]
- train a regression cost model in parallel (i.e., to predict time or \$\$) and incorporate that into the query selection heuristic
 - mixed results [Settles et al. '08; Haertel et al. '08; Tomanek and Hahn '10]

2. New Query Types

- in many NLP applications, "features" are discrete variables with semantic meaning:
 - words
 - affixes
 - capitalization
 - other orthographic patterns
- what if active learning systems could ask about "feature labels," too?

DUALIST

Results: Movie Reviews

Results: WebKB

Results: Science

3. Multi-Task, Multi-View Active Learning

- CMU's NELL (Never Ending Language Learner)
- given: an ontology (schema), access to the Web, and a few seed examples per predicate, and periodic access to humans
- task: run 24x7 each day, populating a knowledge base with new facts
 - learning to read and reading to learn …

NELL's Architecture

- multiple tasks/views constrain each other, helping to prevent concept drift ("checks and balances")
- to date: >1.5 million beliefs at 80% precision

One View: CPL

(contextual patterns)

Predicate	Pattern
emotion	hearts full of X
beverage	cup of aromatic X
newspaper	op-ed page of X
teamPlaysInLeague	X ranks second in Y
bookAuthor	Y classic X

Another View: CMC

(orthographic features)

Predicate	Feature	Weight
mountain	LAST=peak	1.791
mountain	LAST=mountain	1.093
mountain	FIRST=mountain	-0.875
musicArtist	LAST=band	1.853
musicArtist	POS=DT_NNS	1.412
musicArtist	POS=DT_JJ_NN	-0.807
newspaper	LAST=sun	1.330
newspaper	LAST=university	-0.318
newspaper	POS=NN_NNS	-0.798
university	LAST=college	2.076
university	PREFIX=uc	1.999
university	LAST=state	1.992
university	LAST=university	1.745
university	FIRST=college	-1.381
visualArtMovement	SUFFIX=ism	1.282
visualArtMovement	PREFIX=journ	-0.234
visualArtMovement	PREFIX=budd	-0.253

Gender Issues

I proudly voted for _
_ is still the governor
_ is the Republican
nominee
_ signed the legislation
_ signed this bill

impeachment proceedings of _
_ 's inaugural
_ signs bill
endorsed _
vice presidential candidates like _

- these CPL patterns are generally correlated with males across the Web
- even though CMC learned that "Sarah" is a *female*name, these patterns initially overwhelmed all other
 evidence, and NELL predicted *male*
- these days, NELL uses multi-task/view active learning algorithms to identify beliefs with "conflicting" evidence, and query them

Interesting Open Issues

- better cost-sensitive approaches
- "crowdsourced" labels (noisy oracles)
- batch active learning (many queries at once)
- HCI / user interface issues
- data reusability

For Further Reading...

new book published by Morgan & Claypool

free to download from the CMU campus network

active-learning.net