Expectation Maximization

Avinava Dubey

Figure 1: f is convex on [a, b] if $f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$ $\forall x_1, x_2 \in [a, b], \ \lambda \in [0, 1].$

Convex Fn properties

- f is concave if -f is convex
- If f(x) is twice differentiable and f''(x) >= 0 then f(x) is convex
- -In(x) is convex on the interval (0,inf)

Contd

• Jensen's inequality

Theorem 2 (Jensen's inequality) Let f be a convex function defined on an interval I. If $x_1, x_2, \ldots, x_n \in I$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0$ with $\sum_{i=1}^n \lambda_i = 1$,

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \le \sum_{i=1}^n \lambda_i f(x_i)$$

$$f\left(\sum_{i=1}^{n+1}\lambda_{i}x_{i}\right) = f\left(\lambda_{n+1}x_{n+1} + \sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$
$$= f\left(\lambda_{n+1}x_{n+1} + (1-\lambda_{n+1})\frac{1}{1-\lambda_{n+1}}\sum_{i=1}^{n}\lambda_{i}x_{i}\right)$$

Contd

$$\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) f\left(\frac{1}{1 - \lambda_{n+1}} \sum_{i=1}^{n} \lambda_i x_i\right)$$

$$= \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) f\left(\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right)$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i)$$

$$= \lambda_{n+1} f(x_{n+1}) + \sum_{i=1}^{n} \lambda_i f(x_i)$$

$$= \sum_{i=1}^{n+1} \lambda_i f(x_i)$$

• Note that since $-\ln(x)$ is convex we have

$$\ln \sum_{i=1}^n \lambda_i x_i \ge \sum_{i=1}^n \lambda_i \ln(x_i).$$

Three coin Example^[1]

- We observe a series of coin tosses generated in the following way:
- A person has three coins.
 - Coin 0: probability of Head is λ
 - Coin 1: probability of Head p
 - Coin 2: probability of Head q
- Consider the following coin-tossing scenarios:

Estimation Problems

- Scenario I: Toss one of the coins six times.
 - Observing HHHTHT

Which coin is more likely to produce this sequence? Suppose we know the probability of H for each coin.

 Scenario II: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2 Observing the sequence HHHHT, THTHT, HHHHT, HHTTH produced by Coin 0, Coin1 and Coin2

Estimate most likely values for p, q, λ (the probability of H in each coin)

 Scenario III: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2 Observing the sequence HHHT, HTHT, HHHT, HTTH produced by Coin 1 and/or Coin 2 Estimate most likely values for λ, p, q.

The label of the first toss (z) is hidden, we want to estimate the most likely hypothesis $\theta = (\lambda, p, q)$ under hidden z.

Key Intuition

- If we knew which of the data points (HHHT), (HTHT), (HTTH) came from Coin1 and which from Coin2, there was no problem.
- Recall that the "simple" estimation is the ML estimation:
- Assume that you toss a (p,1-p) coin m times and get k Heads m-k Tails.

 $\log[P(D|p)] = \log [p^{k} (1-p)^{m-k}] = k \log p + (m-k) \log (1-p)$

To maximize, set the derivative w.r.t. p equal to 0:

 $d/dp \{ \log P(D|p) \} = k/p - (m-k)/(1-p) = 0$

Solving this for p, gives: p=k/m

Key Intuition

 Since we do not know which of the data points (HHHT), (HTHT), (HTTH) came from Coin1 and which from Coin2, we use an iterative approach for estimating (λ,p,q).

Derivation^[2]

• Log likelihood:- $L(\theta) = \ln \mathcal{P}(\mathbf{X}|\theta).$

$$\mathcal{P}(\mathbf{X}|\theta) = \sum_{\mathbf{z}} \mathcal{P}(\mathbf{X}|\mathbf{z},\theta) \mathcal{P}(\mathbf{z}|\theta).$$

- We wish to find θ iterative such that $L(\theta) > L(\theta_n)$ Where θ_n is previous iterations θ value.
- The difference can be written as

$$L(\theta) - L(\theta_n) = \ln \mathcal{P}(\mathbf{X}|\theta) - \ln \mathcal{P}(\mathbf{X}|\theta_n).$$

= $\ln \left(\sum_{\mathbf{z}} \mathcal{P}(\mathbf{X}|\mathbf{z},\theta) \mathcal{P}(\mathbf{z}|\theta) \right) - \ln \mathcal{P}(\mathbf{X}|\theta_n)$

Note that
$$\ln \sum_{i=1}^n \lambda_i x_i \ge \sum_{i=1}^n \lambda_i \ln(x_i)$$

$$\begin{split} L(\theta) - L(\theta_n) &= \ln\left(\sum_{\mathbf{z}} \mathcal{P}(\mathbf{X}|\mathbf{z},\theta)\mathcal{P}(\mathbf{z}|\theta)\right) - \ln\mathcal{P}(\mathbf{X}|\theta_n) \\ &= \ln\left(\sum_{\mathbf{z}} \mathcal{P}(\mathbf{X}|\mathbf{z},\theta)\mathcal{P}(\mathbf{z}|\theta) \cdot \frac{\mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n)}{\mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n)}\right) - \ln\mathcal{P}(\mathbf{X}|\theta_n) \\ &= \ln\left(\sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n) \frac{\mathcal{P}(\mathbf{X}|\mathbf{z},\theta)\mathcal{P}(\mathbf{z}|\theta)}{\mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n)}\right) - \ln\mathcal{P}(\mathbf{X}|\theta_n) \\ &\geq \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n) \ln\left(\frac{\mathcal{P}(\mathbf{X}|\mathbf{z},\theta)\mathcal{P}(\mathbf{z}|\theta)}{\mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n)}\right) - \ln\mathcal{P}(\mathbf{X}|\theta_n) \\ &= \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n) \ln\left(\frac{\mathcal{P}(\mathbf{X}|\mathbf{z},\theta)\mathcal{P}(\mathbf{z}|\theta)}{\mathcal{P}(\mathbf{z}|\mathbf{X},\theta_n)}\right) \\ &\triangleq \Delta(\theta|\theta_n). \end{split}$$

•

Derivation

$$\begin{aligned} \mathcal{L}(\theta_n | \theta_n) &= L(\theta_n) + \Delta(\theta_n | \theta_n) \\ &= L(\theta_n) + \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z} | \mathbf{X}, \theta_n) \ln \frac{\mathcal{P}(\mathbf{X} | \mathbf{z}, \theta_n) \mathcal{P}(\mathbf{z} | \theta_n)}{\mathcal{P}(\mathbf{z} | \mathbf{X}, \theta_n) \mathcal{P}(\mathbf{X} | \theta_n)} \\ &= L(\theta_n) + \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z} | \mathbf{X}, \theta_n) \ln \frac{\mathcal{P}(\mathbf{X}, \mathbf{z} | \theta_n)}{\mathcal{P}(\mathbf{X}, \mathbf{z} | \theta_n)} \\ &= L(\theta_n) + \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z} | \mathbf{X}, \theta_n) \ln 1 \\ &= L(\theta_n), \end{aligned}$$

Intuition

• In EM we optimize $l(\theta|\theta_n)$

Figure 2: Graphical interpretation of a single iteration of the EM algorithm: The function $l(\theta|\theta_n)$ is bounded above by the likelihood function $L(\theta)$. The functions are equal at $\theta = \theta_n$. The EM algorithm chooses θ_{n+1} as the value of θ for which $l(\theta|\theta_n)$ is a maximum. Since $L(\theta) \ge l(\theta|\theta_n)$ increasing $l(\theta|\theta_n)$ ensures that the value of the likelihood function $L(\theta)$ is increased at each step.

Derivation

• Formally we have

$$\begin{aligned} \theta_{n+1} &= \arg \max_{\theta} \left\{ l(\theta|\theta_n) \right\} \\ &= \arg \max_{\theta} \left\{ L(\theta_n) + \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X}, \theta_n) \ln \frac{\mathcal{P}(\mathbf{X}|\mathbf{z}, \theta) \mathcal{P}(\mathbf{z}|\theta)}{\mathcal{P}(\mathbf{X}|\theta_n) \mathcal{P}(\mathbf{z}|\mathbf{X}, \theta_n)} \right\} \\ &\text{Now drop terms which are constant w.r.t. } \theta \\ &= \arg \max_{\theta} \left\{ \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X}, \theta_n) \ln \mathcal{P}(\mathbf{X}|\mathbf{z}, \theta) \mathcal{P}(\mathbf{z}|\theta) \right\} \\ &= \arg \max_{\theta} \left\{ \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X}, \theta_n) \ln \frac{\mathcal{P}(\mathbf{X}, \mathbf{z}, \theta)}{\mathcal{P}(\mathbf{z}, \theta)} \frac{\mathcal{P}(\mathbf{z}, \theta)}{\mathcal{P}(\theta)} \right\} \\ &= \arg \max_{\theta} \left\{ \sum_{\mathbf{z}} \mathcal{P}(\mathbf{z}|\mathbf{X}, \theta_n) \ln \mathcal{P}(\mathbf{X}, \mathbf{z}|\theta) \right\} \end{aligned}$$

Algorithm

• E-step Find the conditional expectation,

 $E_{\mathbf{Z}|\mathbf{X},\theta_n}\{\ln \mathcal{P}(\mathbf{X},\mathbf{z}|\theta)\}$

• Maximize wrt θ

Convergence

Intuition

- At each iteration the objective is non-decreasing
- The log-likelihood is bounded above
- It should converge but at a local minima

Three Coin Estimation Problems

- Scenario I: Toss one of the coins six times.
 - Observing HHHTHT

Which coin is more likely to produce this sequence? Suppose we know the probability of H for each coin.

 Scenario II: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2 Observing the sequence HHHHT, THTHT, HHHHT, HHTTH produced by Coin 0, Coin1 and Coin2

Estimate most likely values for p, q, λ (the probability of H in each coin)

 Scenario III: Toss coin 0. If Head – toss coin 1; o/w – toss coin 2 Observing the sequence HHHT, HTHT, HHHT, HTTH produced by Coin 1 and/or Coin 2 Estimate most likely values for λ, p, q.

The label of the first toss (z) is hidden, we want to estimate the most likely hypothesis $\theta = (\lambda, p, q)$ under hidden z.

EM

 $P(D^{i}, 1 | \lambda, p, q) = \lambda p^{h_{i}} (1-p)^{m-h_{i}}$ z_i is an indicator variable $P(D^{i}, 0 | \lambda, p, q) = (1 - \lambda)q^{h_{i}}(1 - q)^{m - h_{i}}$ $P(D^{i}, z_{i} | \lambda, p, q) = [\lambda p^{h_{i}} (1-p)^{m-h_{i}}]^{z_{i}} [(1-\lambda)q^{h_{i}} (1-q)^{m-h_{i}}]^{(1-z_{i})}$ $=\lambda^{z_i}p^{z_ih_i}(1-p)^{z_i(m-h_i)}(1-\lambda)^{1-z_i}q^{(1-z_i)h_i}(1-q)^{(1-z_i)(m-h_i)}$ $logP(D^{i}, z_{i} | \lambda, p, q) = z_{i}log\lambda + z_{i}h_{i}logp + z_{i}(m - h_{i})log(1 - p) +$ $(1-z_i)\log(1-\lambda) + (1-z_i)h_i\log q + (1-z_i)(m-h_i)\log(1-q)$ $P(D, z \mid \lambda, p, q) = \prod_{i} P(D^{i}, z_{i} \mid, p, q)$ $logP(D, z \mid \lambda, p, q) = \sum logP(D^{i}, z_{i} \mid \lambda, p, q)$ E[X + Y] = E[X] + E[Y] $E[\log P(D, z \mid \lambda, p, q)] = E[\sum_{i} \log P(D^{i}, z_{i} \mid \lambda, p, q)] = \sum_{i} E[\log P(D^{i}, z_{i} \mid \lambda, p, q)]$ $E[z_i] = P_i$ $= \sum E[z_i \log \lambda + z_i h_i \log p + z_i (m - h_i) \log(1 - p) + (1 - z_i) \log(1 - \lambda) + (1 - z_i) h_i \log q + (1 - z_i) (m - h_i) \log(1 - q)]$ $= \sum P_i \log \lambda + P_i h_i \log p + P_i (m - h_i) \log(1 - p) + (1 - P_i) \log(1 - \lambda) + (1 - P_i) h_i \log q + (1 - P_i) (m - h_i) \log(1 - q)]$

EM

- Suppose (λ, p, q) is the current estimate of parameters.
- What is the probability P(z) given(\$\tilde{\lambda}\$,\$\tilde{\tilde{p}\$,\$\tilde{q}\$}\$) and D?
- Suppose there were m coin tosses and h heads in Dⁱ. Given the current parameters,

$$P_i = P(z_i = 1 | D^i) = P(\text{Coin1} | D^i) = \frac{P(D^i | \text{Coin1}) P(\text{Coin1})}{P(D^i)} = \frac{P(D^i | \text{Coin1}) P$$

$$= \frac{\widetilde{\lambda}\widetilde{p}^{h_i}(1-\widetilde{p})^{m-h_i}}{\widetilde{\lambda}\widetilde{p}^{h_i}(1-\widetilde{p})^{m-h_i} + (1-\widetilde{\lambda})\widetilde{q}^{h_i}(1-\widetilde{q})^{m-h_i}} E[Y] = \sum_{y_i} y_i P(Y = y_i)$$

E[z_i] = 1×P(D_i was obtained from Coin 1) +

 $0 \times P(D_i \text{ was obtained from Coin } 2) = P_i$

EM

Example 2 GMM^[3]

Gaussian Distribution

$$G_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Mixture of Gaussian can model arbitrary distributions

•

GMM

• An example of two mixtures:-

EM algorithm for GMM

- E.g., A mixture of K Gaussians:
 - Z is a latent class indicator vector

$$p(z_n) = \operatorname{multi}(z_n : \pi) = \prod_k (\pi_k)^{z_n^k}$$

• X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid z_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k)\right\}$$

• The likelihood of a sample:

$$p(x_{n}|\mu, \Sigma) = \sum_{k} p(z^{k} = 1 | \pi) p(x, | z^{k} = 1, \mu, \Sigma)$$

=
$$\sum_{z_{n}} \prod_{k} \left((\pi_{k})^{z_{n}^{k}} N(x_{n} : \mu_{k}, \Sigma_{k})^{z_{n}^{k}} \right) = \sum_{k} \pi_{k} N(x, | \mu_{k}, \Sigma_{k})$$

How is EM derived?

- A mixture of K Gaussians:
 - Z is a latent class indicator vector

$$p(\boldsymbol{z}_n) = \operatorname{multi}(\boldsymbol{z}_n : \pi) = \prod_k (\pi_k)^{\boldsymbol{z}_n^*}$$

• X is a conditional Gaussian variable with a class-specific mean/covariance

$$p(x_n \mid \boldsymbol{z}_n^k = 1, \mu, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma_k|^{1/2}} \exp\left\{-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k)\right\}$$

• The likelihood of a sample:

$$p(x_n | \mu, \Sigma) = \sum_k p(z_n^k = 1 | \pi) p(x_n | z_n^k = 1, \mu, \Sigma)$$

=
$$\sum_{z_n} \prod_k \left((\pi_k)^{z_n^k} N(x_n : \mu_k, \Sigma_k)^{z_n^k} \right) = \sum_k \pi_k N(x_n | \mu_k, \Sigma_k)$$

• The "complete" likelihood

$$p(x_n, z_n^k = 1 | \mu, \Sigma) = p(z_n^k = 1 | \pi) p(x_n | z_n^k = 1, \mu, \Sigma) = \pi_k N(x_n | \mu_k, \Sigma_k)$$
$$p(x_n, z_n | \mu, \Sigma) = \prod_k \left[\pi_k N(x_n | \mu_k, \Sigma_k) \right]^{z_n^k}$$

But this is itself a random variable! Not good as objective function

How is EM derived?

• The complete log likelihood:

$$\ell(\mathbf{0}; D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n \mid \pi) p(x_n \mid z_n, \mu, \sigma)$$
$$= \sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}$$
$$= \sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C$$

• The expected complete log likelihood

$$\langle \ell_{c}(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{z}) \rangle = \sum_{n} \langle \log p(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \rangle_{p(\boldsymbol{z}\mid\boldsymbol{x})} + \sum_{n} \langle \log p(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \rangle_{p(\boldsymbol{z}\mid\boldsymbol{x})}$$
$$= \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle ((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log |\boldsymbol{\Sigma}_{k}| + \boldsymbol{C})$$

E-step

- We maximize $\langle I_c(\theta) \rangle$ iteratively using the following iterative procedure:
 - Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).

$$\tau_n^{k(t)} = \left\langle Z_n^k \right\rangle_{q^{(t)}} = p(Z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)}) = \frac{\pi_k^{(t)} \mathcal{N}(x_n, \mid \mu_k^{(t)}, \Sigma_k^{(t)})}{\sum_i \pi_i^{(t)} \mathcal{N}(x_n, \mid \mu_i^{(t)}, \Sigma_i^{(t)})}$$

Here we are essentially doing inference

M-step

- We maximize $\langle I_c(\theta) \rangle$ iteratively using the following iterative procudure:
 - Maximization step: compute the parameters under current results of the expected value of the hidden variables

 $\pi_k^* = \arg \max \left\langle l_c(\mathbf{\theta}) \right\rangle, \qquad \Rightarrow \frac{\partial}{\partial \pi_k} \left\langle l_c(\mathbf{\theta}) \right\rangle = \mathbf{0}, \forall k, \quad \text{s.t. } \sum_k \pi_k = \mathbf{1}$

$$\Rightarrow \pi_k^* = \frac{\sum_n \langle \boldsymbol{z}_n^k \rangle_{q^{(t)}}}{N} = \frac{\sum_n \tau_n^{k(t)}}{N} = \langle \boldsymbol{n}_k \rangle / N$$

$$\mu_{k}^{*} = \arg \max \left\langle /(\boldsymbol{\theta}) \right\rangle, \quad \Rightarrow \mu_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} \boldsymbol{x}_{n}}{\sum_{n} \tau_{n}^{k(t)}} \qquad \qquad \text{Fact:} \\ \Sigma_{k}^{*} = \arg \max \left\langle /(\boldsymbol{\theta}) \right\rangle, \quad \Rightarrow \Sigma_{k}^{(t+1)} = \frac{\sum_{n} \tau_{n}^{k(t)} (\boldsymbol{x}_{n} - \mu_{k}^{(t+1)}) (\boldsymbol{x}_{n} - \mu_{k}^{(t+1)})^{T}}{\sum_{n} \tau_{n}^{k(t)}} \qquad \qquad \frac{\partial \log |\mathbf{A}^{-1}|}{\partial \mathbf{A}^{-1}} = \mathbf{A}^{T} \\ \frac{\partial \mathbf{X}^{T} \mathbf{A} \mathbf{X}}{\partial \mathbf{A}} = \mathbf{X}^{T}$$

 This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their corresponding "sufficient statistics")

Example 3 HMM

Observation space
 Alphabetic set:
 Euclidean space:
 R^d

 Index set of hidden states

$$\mathbf{I} = \left\{ 1, 2, \cdots, \mathcal{M} \right\}$$

Transition probabilities between any two states

Graphical model

Start probabilities

 $p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \dots, \pi_M).$

Emission probabilities associated with each state

 $p(x_t | y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in \mathbb{I}.$ or in general:

 $p(\mathbf{x}_t \mid \mathbf{y}_t^i = \mathbf{1}) \sim \mathbf{f}(\cdot \mid \theta_i), \forall i \in \mathbf{I}.$

State automata

The Baum Welch algorithm

• The complete log likelihood

$$\ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(\boldsymbol{y}_{n,1}) \prod_{t=2}^{T} p(\boldsymbol{y}_{n,t} \mid \boldsymbol{y}_{n,t-1}) \prod_{t=1}^{T} p(\boldsymbol{x}_{n,t} \mid \boldsymbol{x}_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta};\mathbf{x},\mathbf{y})\right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i}\right\rangle_{p(\boldsymbol{y}_{n,1}|\mathbf{x}_{n})} \log \pi_{i}\right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j}\right\rangle_{p(\boldsymbol{y}_{n,t-1},\boldsymbol{y}_{n,t}|\mathbf{x}_{n})} \log a_{i,j}\right) + \sum_{n} \sum_{t=1}^{T} \left(\boldsymbol{x}_{n,t}^{k} \left\langle \boldsymbol{y}_{n,t}^{i}\right\rangle_{p(\boldsymbol{y}_{n,t}|\mathbf{x}_{n})} \log b_{i,k}\right)$$

- EM
 - The E step

$$\gamma'_{n,t} = \left\langle \mathbf{y}'_{n,t} \right\rangle = p(\mathbf{y}'_{n,t} = 1 | \mathbf{x}_n)$$

$$\xi'_{n,t} = \left\langle \mathbf{y}'_{n,t-1} \mathbf{y}^j_{n,t} \right\rangle = p(\mathbf{y}'_{n,t-1} = 1, \mathbf{y}^j_{n,t} = 1 | \mathbf{x}_n)$$

The M step ("symbolically" identical to MLE)

$$\pi_{i}^{ML} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad b_{ik}^{ML} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

EM summary

- Nice method to get to local optimum solution
- Guaranteed to converge, never decrease likelihood.
- Some problem may require time consuming inference.

- [1] <u>http://www.cs.ucsb.edu/~ambuj/Courses/bioinformatics/EM.pdf</u>
- [2] <u>http://www.seanborman.com/publications/EM_algorithm.pdf</u>
- [3] Class lecture notes