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Supervised Learning: Given the 

“right answer” for each example.

Linear Regression 

problem: Predict real 

valued output

(What is the other type?)



Regression

• Training Dataset

Size (feets2) Price (*1000)

510 413

650 629

810 840

Notation:

• m is the number of training examples

• x input features

• y output variable

X(i) Y(i)



Supervised Learning

Training Dataset

Learning Algorithm

Hypothesis (h)Size of house Estimated 

Price

h maps input data x to output y



Linear Regression

• Hypothesis Set: Let output be a linear function 

of input data ie

• Parameters: a1 ,a0

ha(x) = a1x + a0



Which h to choose

• Choose an h so that the prediction of the 

hypothesis is same as that of Y

• J also known as cost function, loss function 

etc.

mimimize J(a1,a0) =	 ���∑ (h(x(i))
 
–

 
Y(i)

 
)^2 �

# of training samples actualPrediction 



Simpler hypothesis 

• h(a1) = a1x

• a1 = 1 

• J(a1) =	 ���∑ (h(x(i))
 
–

 
Y(i)

 
)^2 � = 0
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Simpler hypothesis 

• h(a1) = a1x

• a1 = 0.5 

• J(a1) =	 ���∑ (h(x(i))
 
–

 
Y(i)

 
)^2 � = 0.68
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Simpler hypothesis 

• h(a1) = a1x

• a1 = 0 

• J(a1) =	 ���∑ (h(x(i))
 
–

 
Y(i)

 
)^2 � = 2.3
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Simpler Hypothesis
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a1 = 1 minimizes J and corresponds to finding 

a straight line that fits the data well



Finding optimal parameter

• Analytical Solution:-

• Differentiate wrt a1 and substitute as zero

� �� =�(� � � − 2��� � � � + ���� � �)
�

� −2� � � � + 2��� � �
�

= 0

�� =	
∑ �(�)�(�)�
∑ � � ��



Vector Algebra/Calculus

• Let � = 	
�(�)
�(�)
⋱

�(�)
and � =	

1 ��(�) ��(�)
1 ��(�) ��(�)
⋮
1

⋱
��(�)

⋮
��(�)

• The objective can be written as:

� � = | �	 − �� |�



Vector Algebra

• Square of a vector:

• Diff. wrt a vector:

| � |� = � �

δ�
δ� =

δ�
δ��
δ�
δ��
⋮
δ�
δ��



Vector Calculus



Linear Regression 

• Input: X of dim m*(d+1), output Y of dim m*1

• Objective:-

• Parameter:- a

Maximize � � = | �	 − �� |�



Finding optimal parameter

• Analytical Solution:-

• Differentiate wrt a1 and substitute as zero

� �� =�(� � � − 2��� � � � + ���� � �)
�

� −2� � � � + 2��� � �
�

= 0
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∑ � � ��



Analytical Solution

� = �	 − ��  �	 − ��
			= 	� �	 − 2� �� + � � ��
δ�
δ� = −2� � + 2	� ��	

� = � � "�� �



Newton Update

• If we consider Taylor’s approximation at a 

point a0 we have:-

• Diff wrt Δ$ and putting to zero we get:-

� � = � �% +	�& �% Δ$
+ 1
2 �

&&(�%)(Δ$)�	

�& �% + �&&(�%)Δ$ = 0

Δ$ =	
�&(�%)
�&&(�%)



Newton Update

• If we consider Taylor’s approximation at a 

point a0 we have:-

• Diff wrt Δ$ and putting to zero we get:-

� � = � �% +	�& �% '$
+ 1
2((�%)('$)

�	

�& �% +((�%)'$ = 0

'$ = −("��&(�%)

� = �% + '$



Gradient Descent 

) = )% + '*
+ = +% + ',

'* = −γ.(�%)



Gradient Descent

• Find the gradient .${0}
• Find an optimal step in the direction of the 

gradient 2
– Eg: Back-tracking, grid search etc.

• Iterate till the update is small enough

�{34�} = � 3 	− 2.${0}



Equivalence of LMS and MLE



Equivalence of LMS and MLE



Ridge & Lasso



What did we learn

• Vector Calculus

• A bunch of optimization schemes

– Analytical, Newton update, Gradient descent

• Linear Regression

• Ridge & Lasso



Logistic Regression



Logistic Regression



Learning Parameter w



Learning



Multi-Class


