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Outline

* Bias & Variance Trade-off
« Convex optimization

A little bit about KNN



Bias Variance & Model Selection

« Bias-variance Decomposition

The model you hope to get with infinite data

h*: “Mean” True Hypothesis
e.g. some non-learn model

Hypotheses space:
e.g. linear models

The set of true models due to the
randomness in the h* its self

The set of models you can possibly
get due to the randomness of data
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Bias Variance & Model Selection

« Bias-variance Decomposition

E[h(X)] The model you hope to get with infinite data

E[h*(X)]

h*: “Mean” True Hypothesis
e.g. some pon-learn model

Bias

Hypotheses space:
e.g. linear models

Variance

.

Bayes Error

E(E[h(X)]-E[h*(X)])

Var[h*(X)]
The set of true models due to the randomness
in the h* its self

Var[h(X)]
The set of models you can possibly get due to
° the randomness of data °




Bias Variance & Model Selection

« Bias-variance Decomposition

Data is finite !!!

Hypotheses space:
e.g. linear models

E[h(X)] The best model you hope to get with infinite data

E[h*(X)]

h*: “Mean” True Hypothesis
e.g. some pon-learn model

Bias

Variance

Bayes Error

\ E(E[h(X)]-E[h*(X)])
/ R(distance of h and h*)

Var[h*(X)]

The set of true 1IMTOUEIS aUe TO e randomness
in the h* its self

Var[h(X)] | R(not get h)

the randomness of data

The set of models'you can possibly get due to




Bias Variance & Model Selection

« Bias-variance Decomposition

R(h(X),h*(X)) = Var[h(X)] + E(ENX)]-E[h*X)])> + Var[h*(X)]

R(f) = E[(f(X) — V)%= E[(f(X) — E[f(X)])?] + E[(E[f(?)] P+
A
E(E[h(X)]-E[h*(X)])?
R(distance of h and h*) |

Var[h*(X)] | R(not get h*)
The set of true Moaers aue to e randomness

in the h* its self

Var[h(X)] | R(not get h)
The set of modelsyou can possibly get due to
® the randomness of data °




Bias Variance & Model Selection

« Bias-variance Decomposition

R(h(X),h*(X)) = Var[h(X)] + E(E[h(X)]-E[h*(X)])? + Var[h*(X)]

Case study: Regression o

True Hypothesis plus variance: h*(X) = B,x? + B;x+ B, +€ ©
Estimated Hypothesis h(X) = B, (x™)x + B, (x™) -
Variance of estimation V(h(X)) = V= [B; (x™)X + B, (x™)]
Variance of true hypothesis V(h* (X)) = V[e] = o2 1005 00 05 10 15 20
The optimal hypothesis in your H space: E[h(X)] = En[B; (x™)]x + En[Bo (x™)] = B1x + B,

The true hypothesis E[h* (X)] = B,x? + B, x + B,




300 training data & Fitted line True model, 300 simulated data, and 99% variance




Bias Variance & Model Selection

« Model Selection
R(h(X),h*(X)) = Var[h(X)] + EEMX]-EM*(X)])? + Var[h*(X)]

Goal: minimize F1SK by choosing the best hypotheses subspace
Why? Your estimator is based on some assumption of the model class

e Under fit hypotheses set Over-fit hypotheses set 4



Bias Variance & Model Selection

« Model Selection

What is true Risk? Risk is test error

- Inregression: risk is expected squared error

- In classification

- risk can be the expected 0/1 loss = test error
- Or some other form like expected hinge loss (SVM)

True risk
(Mean Square Error)

Variance

Complexity of F

Why the true risk increases when
Complexity of F gets bigger?

We have a larger hypotheses space =>

We have more possible models that
can fit the random drawn data



Bias Variance & Model Selection

« Model Selection

If we know the true risk, we can always get an optimal hypotheses set
But, we do not know it...

How to estimate the true risk?

CV and GCV

Structural risk minimization: regularization, panelizing using prior
AIC and BIC scoring, MDL, etc

Other criteria like Cp...

= 82 S e



Bias Variance & Model Selection

e Model selection
o CV & GCV

Run 1l

Run 2

Run K

D training I]validation

Total number of examples

Estimating risk directly

Assumption:
p(X) ~ uniform({x1...xn})

It is approximately right when
validation set is large enough



Bias Variance & Model Selection

* Model selection e
Estimating risk directly

o CV & GCV

Assumption:

p(X) ~ uniform({x1...xn})
It is approximately right when
validation set is large enough

K =
>
Size of
More data for training validation set

= Less biased

Less data for validating
=> Validation result inconsistent (large variance)



Bias Variance & Model Selection

« Model selection

o Structural risk minimization

Penalize the model complexity in likelihood function

fn = argmin {f (f) + C'(f)}
feF |

Without a prior: the information content of hypothesis space is
huge because we have equal probability for each hypothesis set

Having a prior: the information of hypotheses space is reduced
since we know which part of hypotheses space is more likely

and thus reduces the complexity.

Leads to biased but less varied estimation



Bias Variance & Model Selection

« Model selection
o Ofther criteria

Penalize the model complexity in likelihood function
Another reason to panelize the estimated risk

In regression, the bias of empirical risk is
~ y) ~
b r R S S — C }/ia }/t
ias(Ru(S)) = E(Ru(S)) — R(S)) - Z_; ov(Y;, Y;)

Which is always a under-estimated risk

The under estimation needs to be added back to get a
better approximation of R(S), the true risk



Bias Variance & Model Selection

e Model selection
o Ofther Criteria

R(S) = R,,(S) + something

~2
Cp statistics R(S) = R..(S) + 2|S|o

n

1 (Y -7
Cross validation is an 5 i~ L

Rev(S) = —
approximation of Cp ov(5) n ; (1 = H,;z-(S))
5 1 Rss(S) ~ ~ 262|9|
Rey(S) = — 5+ Rey(S) ~ R, (S) +
n(l_]ﬂ)z CV() t() n



Bias Variance & Model Selection

* Model selection
o AIC and BIC try to estimate true likelihood

AIC(S)= —2£5+ 2|5, Minimize AIC(S)
BIC(S) = ¢5 — |2ﬂ log n Minimize -2BIC(S)



Bias Variance & Model Selection

Model selection
o AIC and BIC try to estimate true likelihood

Example: time series

Select the best ARMA(p,q) model

AIC

ma ar [,1] [,2] [,3] [,4] L,5] [,6] L,7] [,8]
[1,] 4.77426 4.58545 4.54928 4.55494 4.55046 4.55623 4.56017 4.56624
[2,] 4.57242 4.55858 4.54877 4.56254 4.55497 4.56117 4.54987 4.55632
[3,] 4.55466 4.56130 4.54991 4.55617 4.54734 4.55147 4.55608 4.55942
[4,] 4.56129 4.55926 4.57457 4.55816 4.55688 4.53982 4.57491 4.56285
[5,] 4.56678 4.56451 4.55606 4.56690 4.53940 4.54652 4.53956 4.54563
[6,] 4.55892 4.56531 4.56586 4.57268 4.55747 4.56946 4.55835 4.56479
[7,] 4.56491 4.55202 4.57143 4.56021 4.56695 4.55845 4.56521 4.55682
[8,] 4.56286 4.54985 4.52739 4.56665 4.57316 4.56505 4.56742 4.57683
[9,] 4.56871 4.55571 4.54614 4.57354 4.57454 4.57233 4.54787 4.54488
[10,] 4.57443 4.58104 4.57003 4.52419 4.54137 4.56380 4.56666 4.50609
[11,] 4.58098 4.58984 4.55609 4.58530 4.55364 4.59737 4.57340 4.56734
[12,] 4.57566 4.57933 4.58238 4.52325 4.52279 4.52049 4.56033 4.54244
[13,] 4.58138 4.54642 4.57841 4.52604 4.56233 4.54471 4.55926 4.55922
[,1] [,2] [,31 [,4] [,5] [,6] L,7] [,8]

[1,] 3.81120 3.63472 3.61086 3.62883 3.63667 3.65475 3.67101 3.68940
[2,] 3.62168 3.62016 3.62267 3.64875 3.65350 3.67201 3.67303 3.69180
[3,] 3.61624 3.63519 3.63612 3.65469 3.65818 3.67463 3.69156 3.70722
[4,] 3.63519 3.64547 3.67310 3.66900 3.68004 3.67530 3.72271 3.72296
[5,] 3.65299 3.66304 3.66691 3.69006 3.67487 3.69432 3.69966 3.71805
[6,] 3.65744 3.67616 3.68902 3.70815 3.70526 3.72957 3.73077 3.74953
[7,] 3.67576 3.67518 3.70691 3.70800 3.72706 3.73087 3.74995 3.75387
[8,] 3.68602 3.68533 3.67518 3.72676 3.74558 3.74979 3.76448 3.78620
[9,]1 3.70418 3.70350 3.70624 3.74596 3.75928 3.76939 3.75724 3.76657
[10,] 3.72223 3.74115 3.74246 3.70893 3.73842 3.77317 3.78834 3.74009
[11,] 3.74109 3.76226 3.74083 3.78235 3.76301 3.81906 3.80740 3.81366
[12,] 3.74808 3.76407 3.77944 3.73263 3.74448 3.75450 3.80665 3.80107
[13,] 3.76612 3.74347 3.78779 3.74773 3.79633 3.79103 3.81789 3.83017

>

Partial ACF

08

04

T

04

PACF of ARMA(1,1) in Simulation

More complex

BIC

The partial correlation
shows

that the true model should
be around ARMA(3,?)



Convex Optimization

« Overview
o Whatis Optimization?

minimize  fo(z)
subject to fi(z) <b;, i=1,...,m.

Least square problem:

minimize fo(z) = ||Az —b||3 = Zi;l(a?a: — b;)2.

N
Linear Programming

minimize cfz \

subject to alz <b;, i=1,...,m.




Convex Optimization

« Overview
o Whatis ConveX Optimization?

The normal optimization problem

minimize  fy(z)
subject to fi(z) <b;, i=1,...,m.

Plus convexity constraint

where the functions fy,..., fin : R® — R are convex, i.e., satisfy

filaz + By) < afi(z) + Bfi(y)



Convex Optimization

« Overview
o Why convex function optimizible?¢

Convex => Non-convex =>
Local minimum = Global minimum multiple local minimum




Convex Optimization

 QOverview
o How do we optimize Convex problem?

min f,(x) Most of convex problems:
Gradient descent, simulated
s.t. f.(x) <= b, annealing, EM (Slower)
i=1,2,...,n

Only a subset of convex problems:
f,(x) are convex Quadratic Programming (Faster)

If question can be solved by QP, then QP is preferred,
if not, we can try to convert the problem into a QP solvable problem



Convex Optimization

« Quadratic Programming
o Sophisticated “technology” solving the optimization problem of

u’ Ru

min,, +d'u+c Objective function: quadratic
a, i+ a,u, +...< b

: : : Linear inequality constraints
au+a,u+..<b

n+L1 n+l

a,. . W+a,. U, +..=b

Equality constraints

Apopyth T a, U = b,



Convex Optimization

« Quadratic Programming
o Example: SVM

Linearly Separable Non-linearly Separable
minwTw, s.t. minwTw + 2 Ce;,  s.t.
w w
i-1
yi(w'x; +b) =1 yi(wTxj+b) =1 —¢

@ € =0 @

Quadratic Programming

T aty +aply +...<b a, uta, g t.=b,

u Ru

min,, +d'u+c s.t.

au+a,u,+..= bn Apjth T A, U, T w=b,



Convex Optimization

« Quadratic Programming

o Dual form

Lagrange Multiplier

Minimize v(x,y)
s.t.u(x,y)=C

The gradient of v and u should
be perpendicular to each other

=>

Vu(x,y) =AVv(x,y)



Convex Optimization

« Quadratic Programming

o Primal vs. dudl

Primal optimization problem (variables z):

minimize  fo(z) = >, z;logz;

subject to Az <b

=1

Dual optimization problem (variables X, v):

- e _aT
maximize —bTA—v—e VLY e A

subjectto A >0



Convex Optimization

« Quadratic Programming

o Why we want to use Dual form

QP: More efficient
Works for some problems that are not obviously QP at the first glance

In SVM: kernel tricks !!!
In the dimension of w is infinity, we cannot solve it by its primal form



KNN
Decision boundary

o Which one is more likely to over-fit the datae
o Which one’s K is larger?
o What will the boundary if varying the value of of K

A A

Weight
Weight

A 4

A 4



