Recitation 4

ML 10701 Zeyu Jin

Outline

- Bias & Variance Trade-off
- Convex optimization
- A little bit about KNN

Bias-variance Decomposition

The model you hope to get with infinite data h*: "Mean" True Hypothesis e.g. some non-learn model Hypotheses space: e.g. linear models The set of true models due to the randomness in the h* its self The set of models you can possibly

get due to the randomness of data

Bias-variance Decomposition

The model you hope to get with infinite data h*: "Mean" True Hypothesis e.g. some non-learn model Bias Hypotheses space: Variance **Bayes Error** e.g. linear models The set of true models due to the randomness in the h* its self The set of models you can possibly get due to the randomness of data

Bias-variance Decomposition

Bias-variance Decomposition

Bias-variance Decomposition

Bias-variance Decomposition

$$R(h(X),h^*(X)) = Var[h(X)] + E(E[h(X)]-E[h^*(X)])^2 + Var[h^*(X)]$$

Case study: Regression

True Hypothesis plus variance: $h^*(X) = \beta_2 x^2 + \beta_1 x + \beta_0 + \epsilon$ Estimated Hypothesis $h(X) = \widehat{\beta_1}(x^n)x + \widehat{\beta_0}(x^n)$ Variance of estimation $V(h(X)) = V_{x^n}[\widehat{\beta_1}(x^n)X + \widehat{\beta_0}(x^n)]$ Variance of true hypothesis $V(h^*(X)) = V[\epsilon] = \sigma^2$

The optimal hypothesis in your H space: $E[h(X)] = E_{x^n} [\widehat{\beta_1}(x^n)] x + E_{x^n} [\widehat{\beta_0}(x^n)] = \widehat{\beta_1} x + \widehat{\beta_0}$ The true hypothesis $E[h^*(X)] = \beta_2 x^2 + \beta_1 x + \beta_0$

True model, 300 simulated data, and 99% variance

regression for 100 trials (each time 300 samples)

regression for 100 trials (each time 30 sample:

Model Selection

$$R(h(X),h^*(X)) = Var[h(X)] + E(E[h(X)]-E[h^*(X)])^2 + Var[h^*(X)]$$

Goal: minimize \mathbf{risk} by choosing the best hypotheses subspace Why? Your estimator is based on some assumption of the model class

Model Selection

What is true Risk? Risk is test error

- In regression: risk is expected squared error
- In classification
 - risk can be the expected 0/1 loss = test error
 - Or some other form like expected hinge loss (SVM)

Why the true risk increases when Complexity of F gets bigger?

We have a larger hypotheses space => We have more possible models that can fit the random drawn data

Model Selection

If we **know** the true risk, we can always get an optimal hypotheses set But, we do not know it...

How to **estimate** the true risk?

- 1. CV and GCV
- 2. Structural risk minimization: regularization, panelizing using prior
- 3. AIC and BIC scoring, MDL, etc
- 4. Other criteria like Cp...

Model selection
 cv & GCV

Estimating risk directly

Assumption: $p(X) \sim uniform(\{x1...xn\})$

It is approximately right when validation set is large enough

Model selection
 cv & GCV

Estimating risk directly

Assumption: $p(X) \sim uniform(\{x1...xn\})$

It is approximately right when validation set is large enough

More data for training

⇒ Less biased

Size of validation set

Less data for validating

=> Validation result inconsistent (large variance)

- Model selection
 - Structural risk minimization

Penalize the model complexity in likelihood function

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \widehat{R}_n(f) + C(f) \right\}$$

Without a prior: the information content of hypothesis space is huge because we have equal probability for each hypothesis set

Having a prior: the information of hypotheses space is reduced since we know which part of hypotheses space is more likely and thus reduces the complexity.

Leads to biased but less varied estimation

- Model selection
 - Other criteria

Penalize the model complexity in likelihood function

Another reason to panelize the estimated risk

In regression, the bias of empirical risk is

$$\mathsf{bias}(\widehat{R}_{\mathsf{tr}}(S)) = \mathbb{E}(\widehat{R}_{\mathsf{tr}}(S)) - R(S)) = -\frac{2}{n} \sum_{i=1} \mathsf{Cov}(\widehat{Y}_i, Y_i)$$

Which is always a under-estimated risk

The under estimation needs to be added back to get a better approximation of R(S), the true risk

- Model selection
 - o Other Criteria

$$R(S) = R_{tr}(S) + something$$

Cp statistics
$$\widehat{R}(S) = \widehat{R}_{tr}(S) + \frac{2|S|\widehat{\sigma}^2}{n}$$

Cross validation is an approximation of Cp

$$\widehat{R}_{CV}(S) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i(S)}{1 - H_{ii}(S)} \right)^2$$

$$\widehat{R}_{CV}(S) pprox rac{1}{n} rac{\mathrm{RSS}(S)}{\left(1 - rac{|S|}{n}
ight)^2}. \quad \widehat{R}_{CV}(S) pprox \widehat{R}_{\mathrm{tr}}(S) + rac{2\widehat{\sigma}^2 |S|}{n}$$

- Model selection
 - AIC and BIC try to estimate true likelihood

$$AIC(S) = -2\ell_S + 2|S|$$
, Minimize $AIC(S)$

$$BIC(S) = \ell_S - \frac{|S|}{2} \log n$$
 Minimize -2BIC(S)

- Model selection
 - AIC and BIC try to estimate true likelihood

Example: time series Select the best ARMA(p,q) model

More complex

BIC

The partial correlation shows that the true model should be around ARMA(3,?)

Overview

o What is Optimization?

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i$, $i = 1, ..., m$.

Least square problem:

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$
.

Linear Programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, ..., m.$

- Overview
 - o What is Convex Optimization?

The normal optimization problem

```
minimize f_0(x)
subject to f_i(x) \leq b_i, i = 1, ..., m.
```

Plus convexity constraint

where the functions $f_0, \ldots, f_m : \mathbf{R}^n \to \mathbf{R}$ are convex, *i.e.*, satisfy $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

- Overview
 - o Why convex function optimizible?

Convex =>
Local minimum = Global minimum

Non-convex => multiple local minimum

Overview

o How do we optimize Convex problem?

$\min f_0(x)$	Most of convex problems:
	Gradient descent, simulated
s.t. $f_i(x) \le b_i$	annealing, EM (Slower)
i=1,2,,n	-

Only a subset of convex problems: $f_i(x)$ are convex Quadratic Programming (Faster)

If question can be solved by QP, then QP is preferred, if not, we can try to convert the problem into a QP solvable problem

- Quadratic Programming
 - Sophisticated "technology" solving the optimization problem of

$$\min_{U} \frac{u^{T}Ru}{2} + d^{T}u + c$$

Objective function: quadratic

$$a_{11}u_1 + a_{12}u_2 + ... \le b_1$$

 \vdots \vdots \vdots

Linear inequality constraints

$$a_{n1}u_1 + a_{n2}u_2 + ... \le b_n$$

$$a_{n+1,1}u_1 + a_{n+1,2}u_2 + ... = b_{n+1}$$

: :

$$a_{n+k,1}u_1 + a_{n+k,2}u_2 + ... = b_{n+k}$$

- Quadratic Programming
 - o Example: SVM

Linearly Separable

$$\min_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{w}, \quad s. t.$$

$$y_{j} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{j} + \mathbf{b}) \ge 1$$

Quadratic Programming

$$\min_{U} \frac{u^{T} R u}{2} + d^{T} u + c \qquad \text{s.t.}$$

Non-linearly Separable

$$\min_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{w} + \sum_{i=1}^{n} C \epsilon_{i}, \qquad s.t.$$

$$y_{j} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{j} + \mathbf{b}) \geq 1 - \epsilon_{i}$$

$$\epsilon_{i} \geq 0$$

s.t.
$$\begin{aligned} a_{11}u_1 + a_{12}u_2 + \dots &\leq b_1 & a_{n+1,1}u_1 + a_{n+1,2}u_2 + \dots &= b_{n+1} \\ &\vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}u_1 + a_{n2}u_2 + \dots &\leq b_n & a_{n+k,1}u_1 + a_{n+k,2}u_2 + \dots &= b_{n+k} \end{aligned}$$

- Quadratic Programming
 - o Dual form

Lagrange Multiplier

Minimize
$$v(x,y)$$

s.t. $u(x,y) = C$

The gradient of v and u should be perpendicular to each other

$$\nabla u(x,y) = \lambda \nabla v(x,y)$$

- Quadratic Programming
 - o Primal vs. dual

Primal optimization problem (variables x):

minimize
$$f_0(x) = \sum_{i=1}^n x_i \log x_i$$
 subject to $Ax \preceq b$ $\mathbf{1}^T x = 1$

Dual optimization problem (variables λ, ν):

maximize
$$-b^T\lambda - \nu - e^{-\nu - 1} \sum_{i=1}^n e^{-a_i^T\lambda}$$
 subject to
$$\lambda \succeq 0$$

- Quadratic Programming
 - o Why we want to use Dual form

QP: More efficient

Works for some problems that are not obviously QP at the first glance

In SVM: kernel tricks!!!

In the dimension of w is infinity, we cannot solve it by its primal form

KNN

- Decision boundary
 - o Which one is more likely to over-fit the data?
 - o Which one's K is larger?
 - What will the boundary if varying the value of of K

