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Optimal Margin Classifier

Recall: Logistic regression

1
1+exp(-w'x)

p(y =llx;w) = = g(w'x)

Predicty = 1 if p(y=1|x;w) >= 0.5 (or w'x >= 0)
More confident thaty =1 if wix >>0
Similarly

More confident on our prediction of A
than our prediction of C



Optimal Margin Classifier
* Define a classifier h,, ,(x):

yeE{-11}
h,,(x)= gw' x +b)

g(z) =1 if z>= 0 (more confident if z >> 0)
g(z) = -1 otherwise (more confident if z << 0)



Margins

Functional margin
A9 = 4D (wlz +b).

We can scale w and b,
changing functional margin
but not output of h,, (x)

 Geometric margin: distance from our training point
to the decision boundary
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Margins

* Given a training set:
* Function margin of (w,b) w.r.t. S:

v = 1min A

1=1,....m

e Geometric margin of (w,b) w.r.t S:

y= min %



Optimal Margin Classifier

* Find decision boundary that maximizes the
geometric margin (the “gap”)

* Recall: we can add arbitrary scaling constraint

on w and b without changing anything

, 1
ming ol

s.t. y@(wlz® + by>1, i=1,....m

Can be solved with QP



Lagrange Duality

e Why?
— To formulate our optimization objective in its dual
form, that allows us to use kernels
— To derive efficient algorithm for solving the
optimization problem

* Primal Optimization Problem



Primal

* Define the generalized Lagrangian to solve the
primal optimization problem

[
£<w a 6 + Z @zgz ‘|‘ Z ﬁzhz(w)
1=1

e Define
Op(w) = max L(w,a,f).

a,B:a; >0

Op(w) = (w) if w satisfies primal constraints
P | otherwise.



Primal

* Hence, we can rewrite the primal optimization
problem as:

min fp(w) = min max L(w,a, ),
w w  a,B:0;>0

e Define the value of our primal problem as p*

k

p* = min, 0p(w)



Dual

e Define

QD(aa 6) — mui)nﬁ(wv Q, ﬁ)

* And the Dual Optimization Problem as:

Jpax Op(a,f) = max minl{w,a,f)

* Define the value of our dual problem as d*

d* = maXay 3:a;>0 QD(U})



Primal and Dual

d" = a in L < min max L(w,« — "
a,?aéomﬁn (w,&aﬁ)_ " a,ﬁ:a?zo ( ; aﬁ) P

* Under certain condition d* = p*

e Karush-Kuhn-Tucker conditions

ai]i£<w*’a*, *) — O’ 1 = ]_’ , M
0
aﬁi£<w*’&*7 *) — O’ 1 = 17, ’l
a;gi(w*) = 0, i=1,...,k  “Dual Complimentarity”
g(w*) < 0, i=1,....,k ifa*>0theng;(w*)=0
af > 0 i=1 . 1.e.the constraint is "active’



Optimal Margin Classifier - Dual

|”

* Recall our “primal” optimization problem:

_ 1
it 0]

st yD(wlz® 4+b)>1, i=1,..., m

e Rewrite the constraints as:

gi(w) = —yD(wTz® +b) +1 <0.

* By “dual complimentarity” condition, o; >0
only for training examples that have
functional margin=1



Optimal Margin Classifier - Dual

* Our support vectors

A

\/




Optimal Margin Classifier - Dual

* The Lagrangian for our optimization problem:

_ 1
it 0]

s.t. gi(w) = _y(i)<wa(i) +b)+1<0.

L(w,b, o) = —ku? Z@ @ b)) —1].



Optimal Margin Classifier - Dual

* First we minimize w.r.t w and b:
L(w, b, ) ——Hw||2 Zoz x“ﬂ—b)—l}.
Vwﬁ(w,b,a):w—zaiyixi —

1=1

%ﬁwba Zay = 0.



Optimal Margin Classifier - Dual

Plugging it back to our Lagrangian:
L(w,b, ) ——Hw||2 Zozz @ +b) —1].
L(w,b, ) Zal——Zy(Zy(J aor; ()T ()—biozz-y(i).

1,7=1

L(w, b, a) ZO‘Z — = Zy(l y(J)ozoz ()T 3),

zyl

e And then maximize w.r.t. o
max, Za __Zy y Do (2@ 20y,

1,7=1
s.t. «a; >0, z'zl ..... m

m

> ayt =0, Inner product



Optimal Margin Classifier - Dual

* Once solved for a, you can find:

=1

T (i : T (i
max;.,(i—_i w2 4 M. (i) =1 w* T ()

2

b* =

* Given a new point, classify using:

- T
w'r+b = (Z oziy(i)a:(i)> x4+ b
i=1

= ) oy @ z) +o.
i=1 Inner product



Kernels

* Dual form of our optimization problem allows
to write our algorithm in terms of inner
products

* Exploit this using kernels

* The resulting algorithm — Support Vector
Machines — can learn efficiently in very high
dimensional spaces



Kernels

* Given an input feature x, we can define a
feature mapping:

w-[3]

* Apply SVM using this feature — replace all
inner products <x,z> with <(x), P(z)> or the
kernel

K(x,2) = 6(x) 6 (2).



Kernels

 Although d(x) may be expensive (O(n?) to
compute, K(x,z) may be inexpensive (O(n))

K(z,2) = (272)% 1177 |

n n 172
K(z,z) = szzz szzl 123
i=1 j=1 L2217
n o(x) = | woxa | .
= Zszszzzj L2X3
i=1 j=1 T3
n T3T9
= D (ma)(zz) | Tl |

* Hence we can get SVM to learn in the high

dimensional feature space without ever
having to explicitly represent vectors ¢(x)



Kernels

* More generally,

K(z,2) = (272 + ¢)

Corresponds to a feature mapping to
O(n9)-dimensional space

e But computing K(x,z) still takes O(n) time



Kernels

* Intuitively, K(x,z) is some measure of how similar x
and z

A kernelis avalid kernel is if there exists some
feature mapping ¢ such that K(x,z) = d(x)"P(z) for
all x, z.

* Theorem (Mercer): Given any m points {x1),...,x(M},
and an m-by-m Kernel matrix, where its (i,j) entry is
K(xW, xi)), K is a valid kernel if and only if the
corresponding kernel matrix is symmetric positive
semi definite



Non Linearly Separable Case

* Mapping to high dimensional feature space
increases the likelihood that the data is
separable (but not always)

A \
\

x X Sometimes we don’t want to
N 8 separate training data exactly
o \ " Recall: Overfitting

vy 7




Non Linearly Separable Case

We want to allow for some mistakes:

Allow functional margin to be less than 1
Whenever that happens pay the cost of Cg,

C is the tradeoff between making large margin
and making mistakes



Non Linearly Separable Case

* Lagrangian

E(w,b,ﬁ,a,r):%wTw+CZ§ Za xw+b)—1+§} Zn@
i=1 :

e Dual form

max, ZCYZ__ZZU y aag (z (j)>

1,7=1
s.t. OS&,SC 1 =1,.

f: Qiy(i) =
i=1



Non Linearly Separable Case

* KKT dual complimentarity conditions:

;=0 = yDwlz® +p)>1
a; =C = yD(wlz® +b) <1
O<a, <(C = ym(wa(i) +0b) = 1.



Non Linearly Separable Case

Loss part: C3¢,
¢ > 0 only if the functional margin, (wx+b)y < 1

From our constraints, we want € 2 1 — (wx+b)y
and minimize ¢ at the same time
 Hence, £ =1—(wx+b)y

Loss = C(1 — (wx+b)y) only if (wx+b)y <1



Non Linearly Separable Case

* Hinge Loss

T A= (w.)<+b)5



Other Loss function

* Hinge Loss L=1-(wx+b)y only if (wx+b)y <1
* 0/1 loss L=1if (wx+b)y <0, O otherwise
* Logistic Loss L = log(1 + exp((-wx+b)y))




SMO
(Sequential Minimal Optimization)
* One efficient way to solve the dual problem
* A kind of coordinate ascent algorithm:

Loop until convergence: {

Fori=1,..., m, {
a; = argmaxg, Wiy, ..., 1, Gy Qigt, ..oy Q).

}




SMO

* The dual optimization problem:
max,, ZQZ__Zyw Doy (2D, 20,

1,7=1
s.t. OgaigC, 1=1,....,m

* SMO algorithm

Repeat till convergence {

1. Select some pair «; and «; to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W (a) with respect to «; and «;, while holding all the
other ay’s (k # i, 7) fixed.



SMO

* Dual optimization problem:

= 1 o= 1 (s N
max, W(a)= Z i — 3 Z y Dy oo, (2@ 29,
i=1

ij=1
st. 0<o;<C, 1=1,....,m

i oy = 0.
i=1

* Say we have picked a, and a, to optimize:

ary + azy® = — Z aiy'.
i=3

aryM + any® = (.

C

A

A

ayr oy ?=t

v




SMO

* We can express a, in terms of a,

a1 = (¢ — asy@ Yy,
e Substituting this back to our optimization
objective W(a):
W (o, s . . ., ) = W((C — agy(2))/y(1), Qo ).
* Since a, to a,, are held fixed, W(a) takes the
form of a quadratic equation:

ac; + bag + ¢



SMO

Solving this quadratic equation for a,

H if anew,unclipped -~ H
2
a;zew _ agew,unclzpped if I S agew,unclzpped S H
L if agew,unclipped <L
A
C
Hip----=mmmmmmmmmmmmmmmmm oo ay Vs ay @t
a,
L

\J




SVM

Optimal Margin Classifier
Dual form is useful
Support vectors are neat
Kernel trick is cool
Different loss function



Learning

Method

Gaussian Naive
Bayes

Logistic
Regression

Generative or
Discriminative

Generative

Discriminative

Review

Decision
Boundary

Loss Function

-log P(X,Y) Equal variance:
linear boundary
Unequal
variance:
guadratic

boundary

-log P(Y|X) Linear

Parameter
Estimation
Algorithm

Model Complexity
Reduction

Estimate pand o
and prior P(Y)
using maximum
likelihood

Place prior on
parameters and use MAP
estimator

No closed form
estimate.
Optimize
objective function
using gradient
descent

L, regularization/ L,
regularization



Learning Method

Generative or

Discriminative

Review

Decision Boundary

Parameter
Estimation

Model Complexity
Reduction

Decision Trees

K-NN

SVM

Linear Regression
(Gaussian Noise)

Discriminative

Discriminative

Discriminative

Discriminative

Either —log P(Y|X)
or zero-one loss

Zero-one loss

Hinge-loss:
C(1-y(wx+b)) only
if y(wx+b)< 1,0
otherwise

Square loss:
(f(X) = Y)?

Axis-aligned
partition of feature
space

Arbitrarily complex

Linear (depends on
kernel)

Linear

Algorithm

Many algorithms,
ID3, CART, C4.5

Must store all
training data to
classify new
points. Choose K
using cross
validation

Solve using
quadratic program
(or SMO) to find
boundary that
maximizes margin

Solve B = (XTX)1XTY

Prune tree or limit
tree depth

Increase K

Reduce C

L, regularization/
L, regularization
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