Recitation: HMM, GM and
Learning Theory



Outline

* Learning Theory
— Uniform bound
— |H| and VC(H)
— Insights
- GM
— Factorized probability
— D-separation
— Inference

 HMM (recap)

— Basic questions
— Algorithms
— Insight



Learning Theory

1. The question
—  Want to know how good our classifier 1s

error, (H)="

true

— However, H 1s trained on some data; the randomness of
data makes this “?”” a distribution. Let’s try

P(error,  (H)=p)=7, p€]0,l1]

— It 1s non-trivial



Learning Theory

1. The question

—  With a family of models H of certain complexity, how

many training samples R 1s needed in order to learn a
model h with reasonable training time and sufficient
accuracy on future data?

—  We want answer

error, (H(X™"))="?

frue

Computationally efficient in polynomial time



Learning Theory

1. The question

— Distribution of error rate

P(error,, (H)=p)
= E[P(error, ,(H(X))=pl X =x)]

= [[[ P(error,, (H(X))= p| X = x)P,,,(X = x)dx

— Maybe we can try to get a uniform bound for this question

P(‘erro (H)-Elerro W(H)]‘<8) ?

true



Learning Theory

1. The question

— Distribution of error rate

P(error,, (H)=p)
= E[P(error, ,(H(X))=pl X =x)]

= f f f P(error, ,(H(X))=plX=x)P_ (X =x)dx

— Maybe we can try to get a uniform bound for this question

P(‘ermr (H)-Elerror,, (H)]‘ <g)="

frue

— Still extremely hard. Maybe bound this probability



Learning Theory

1. Uniform Bound
— Bound the probability of the bounded error
P(‘ermr (H)-E,[erro

true

(H)]|<&)>1-6

I/;I”Lte

— Statisticians do have solution for this form!
— Three basic questions

(H) iso PAC

(H) is non-zero

 His finite, E,[error, (H)]=erro

frue

 Hisfinite, E [error, ,(H)]=erro
His infinite

rtrain

rtrain



Learning Theory

2. Solutions
1) His finite, Elerror,, (H)]=error, , (H) is0

_InlH I+In(1/0)

P(‘erro (H)—O‘<€)21—5 >

I/;rue

| X |

2) H 1s ﬁnite, EX[error (H)] = error (H) 1S NON-ZEro

true train

P(‘error (H)-E,[erro

true

(H)]|<&)>1-9

’/}r ue

8_\/\H\+1n(1/5)
-\ 21x)



Learning Theory

2. Solutions

3) H is infinite

P(|err0r (H)-E,[erro

true

(H)]|<8)>1—5

}/;Tbte

2m



Learning Theory

3. Terms 1n this solutions
— Forsolution 1 and 2: H|=7?
— For solution 3: VC(H) = ?



Learning Theory

3. Terms 1n this solutions
— For solution 1 and 2: |H|=?
— For solution 3: VC(H) = ?

Instead of limiting the maximal depth of a decision tree,
let’s assume n binary attributes and binary class

What 1s |H| ?



Learning Theory

3. Terms 1n this solutions
— Forsolution 1 and 2: H|=7?
— For solution 3: VC(H) =?

*  Find the maximal N

Where there EXIST N points in the problem’s space
* s.t. ALL element of the superset of these points (2N)
* can be picked out by S



Learning Theory

3. Terms 1n this solutions
— Forsolution 1 and 2: H|=7?
— For solution 3: VC(H) =?

What is the VC dimension of a 2D-circle?

{(x,y)Ix*+y" <R’}



Learning Theory

3. Terms 1n this solutions
— Forsolution 1 and 2: H|=7?
— For solution 3: VC(H) =?

What if the a circle plus a point?

{(x,y)] x° + y2 < R>\(0,0)}



Learning Theory

4. Insights

— VC Dimension
. Find the maximal N
. Where there EXIST N points in the problem’s space
. s.t. ALL element of the superset of these points (2V)
. can be picked out by S

Sy(H) = The number of elements of the superset of these N points can
be picked out by H

P (sup |P.(A) — P(A)| > c) <8 (n+1)4 e /2
AcA

S\ (H) is not easy to obtain, but it can be shown that $(4,n) < (n+1)%
Where d is VC dimension



Learning Theory

4. Insights

— Obtain error bound by simulation

*  Known: marginal distribution of data D, true model p(Y|X)

Repeat the following N times

*  Draw m data from D for training; draw k >>m from D for test

*  Draw y, for each x; from p(Y|X)

*  Learn h based on your hypothesis space H

*  Evaluate error, (h)-error,,;,, on test data (or do it
mathematically)

Then you will get a histogram of error which approximates

P(error,,(h)). Solve (H)<g)=1-6

P(error, ,



Learning Theory

4. Insights

— Connection

P(error, (H)<é€&)=1-6

Ifﬂ" ue

Confidence interval: with confidence 6

we conclude that error of estimating error,, . is less than 8



Bayesian Networks

* Bayes Net <~ Factorized probability
— Write Factorized probability




Bayesian Networks

* Bayes Net <~ Factorized probability

— What’s the Bayes net for
* Naive Bayes?
* Full Bayes?
 k-th order Markov Model
* Hidden Markov model



Bayesian Networks

* Understand dependency in BN — D-separation

O—@—=C —0O0—C X and Y are D-separated by Z
"y ;b] If all the path from X to Y are blocked
4 O . lh {
\ " ’ \ o ’ Maybe we lost one case in class



Bayesian Networks

* Understand dependency in BN — D-separation

Original Definition

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in the set C, or

(b) the arrows meet head-to-head at the node, and neither the node, nor any of its
descendants, is in the set C.

Bishop 8.2.2



Bayesian Networks

* Understand dependency in BN — D-separation

X Y Z X Y Z

.«
—

(a) (b)
: ¥

(@) B $ $Descendent

E* ) ( ) ( ) ()
/ ':“_ . "-,‘ Y
h‘ ’ Yyrt



Bayesian Networks

Understand dependency in BN — D-separation

Exam problem TRUE/FALSE

(a) P(D,H) = P(D)P(H) B (©)

(b) P(A,1) = P(A)P(])

(¢) P(A,I|G) = P(A|G)P(I|G) i @

(@) P(J,G|F) = P(J|F)P(G|F) <<

(e) P(J,M|K,L) = P(J|K,L)P(M|K,L)

(f) P(E,C|A,G) = P(E|A,G)P(C|A,G) J ®—
(g) P(E,C|A) = P(E|A)P(C|A) @/



Bayesian Networks

Understand dependency in BN — D-separation

Exam problem TRUE/FALSE

a) P(D,H) = P(D)P(H)
(b) P(A,I) = P{A)P(I)
) P(A,1|G) = P(A|G)P|G)

(d) P(J,G|F)= P(J|F)P(G|F)
) P(J,M|K,L) = P(J|K,L)P(M|K, L)
) P(E,C|A.G) = P(E|A,G)P(C|A,G)
) P(E,C|A) = P(E|A)P(C|A)

Key...

a) Yes, blocked by on E on one path and G on
another path

b) Yes, blocked by E

c) No, G is a descendent of E

d) No, the path JIEABCG is unblocked

e) Yes, blocked on both paths

f) No, path EFGC unblocked

g) Yes, EABC blocked by A, and EFGC
blocked by G



Bayesian Networks

 Inference

— What 1s inference?
the process of computing answers to queries about the
distribution P defined by given BN

 Likelihood
* Conditional probability (we will see one example after this slide)
* Most probable assignment (most likely states sequence in HMM)

— Methods?

 Variable elimination, belief propogation (do exact calculation)
* Gibbs sampling (simulation)



Bayesian Networks

e Inference 1: variable elimination P(G=T|A=T)=2

P(G=T,A=T)

P(G=TIA=T) = PA=T)

= Z P(A:T‘B,C,D,E,F,Gzr)

BCDEF

- Z P(BIA=T)P(D)P(C|B,D)P(E|C,D)P(F|IC,E)P(G =TIF)
BCDEF

= P(BIA=T) Y P(D) Y P(CIB,D)Y P(EID) Y P(FIC,E)P(G = TIF)
B D & E F

fro(ce,G=T) = Z P(FIC,E)P(G = TIF)
F

fen(€,d,G =T) = ) PEId)fyo(c,E,G=T)
E

foo(bd,G=T) = Z Pf.(c,B,D)fcp(c,d,G=T) Binary for all RV



Bayesian Networks

e Inference 2: sampling P(G=T|A=T)="
— Naive sampling:
* (A,B,C,D.E,F,G) each time from
p(A,B,C,D,E,F,G)
e Calculate P(G|A=T) by counting

* Have problem with rare event

— Weighted sampling
* If P(A=T) 1s rare, just set A=T
and sample (A=T,B,C,D,E,F,G)
* When calculating P(G|A=T), the
number of (A=T,b,c,d,e,f,g) is
weighted by p(A=T)




HMM (recap)

e Static vs. time series

Discriminative Generative

@ Q P(Yt, Yt-1 ... [XtXt-1...) P(Xt, Yt, X_},Y,,...

Conditional random field

@ @ Conditioning on no

variable, all Xs and Y's
are correlated



HMM (recap)

* Basic questions

. Parameters

1

2. Factorization  K: number of states
3. Inference
4

Learning  M: number of observations

#par. shorthand
— Initial state: P(y,) K-1 =P(y,=i)
— Transitoin: P(y,|Y;.) K*(K-1)  a;=Ply1=ily=i)
— Emission:  P(x.|y,) K*(M-1) b, =P(x=k|y,=i)



HMM (recap)

* Basic qU.CSthIlS HMM is Generative
1. Parameters
2. Factorization Complete likelihood based on given parameters is

3. Inference
4. Learning P(mlvﬂamTayl"",yT)

= P(y1)p(z1ly1)p(yely1) - - - P(y2ly1) P(2rlyr)
= P(y1) [ I; P(yelye—1) P (¢ |yz)



HMM (recap)

* Basic questions

Parameters P(Yt|X1-t) =9
Factorization '
P(Yt|X1:T) — ?

1
2
3. Inference
4 argmax, P(y,.r|X;.r) =7

Learning

Before that, we have the following tools
1. Forward probability

C( _P(xi’ wX _ XL Y T k) P(&lyt k)Zl t-1 1k

2. Backward probability

ﬂz — p(mt+1, cee axT|yt — 7') - Zi ak,ip(xul | yt-l :i)ﬂti+1



HMM (recap)

* Basic questions
1. Parameters P(v.|X,.) =2

2. Factorization B
P(Yt|X1 :T) o ?
3. Inference

4. Learning argimax., P(y, .11 X1) =7

i

) = p(Xp,. Xy, =1) _ al

p(y, =ilX,
t ) p(x,...,x,) p(x,,...x) —




HMM (recap)

* Basic questions

1. Parameters P(y|X,.) =7
2. Factorization '

P(v X, )=?
3. Inference

. Z’l:,IIJ geee g LT
p(yt — Z|331,- . -,mT) — p(yt 1 )

p(x1,...,27)
_ P =14z1,. ., T)P(Zes1, .-, Tr|Ye = ’i,lml, ooy Tt
p(x1,...,27) :
o} B

: ; k
p(Z1,...,Z7) |_ 3 o
=1

?



HMM (recap)

Basic questions
Parameters P(Yt|X1-t) =9

1

2. Factorization B
P(Yt|X1:T) o ?

3. Inference

4

argmax, P(v, (X, ;) =?

Learning

Vi =08 PR e Ky Vioees Yoo B, Yoot =K)
=X (o PRy X, Voo, YIP (K, Vot =K Koo X5 ¥isees 1)
=max . o P, You =K| YIPRKpsess X g5 Voo Yogs Xis V1)
=max; P(x,, ¥, =k|y, =i)max, . P(X,0s X, Yoo Vits Ko ¥ =1)

=max, P(x., | ¥, =K)a, V!

Viterbi
=P(xy, | Vi =K)max; a,, V]



HMM (recap)

* Basic questions

1. Parameters ( £ (6; x,y)) _ Z( <}’,:._1> . )log ﬁ,-)
2. Factorization " ) P asFa
3. Inference + Z Z \< y,f,,_l v >p(y”_1 . loga, ; )
4. Learning " ) |
+ ; ; \Xn/if <}'r:.r >p(y,,,,|x,,) logb , )

E-step
7nr <ynf> p()’r;f =1[x,)
‘fn,f = <Yn,f—1y;;{r> = p(y;,r—l =1’Yn{r =1|xn)

M-step

' / DN
> Vas aM - Z Zr zfnf pHL rl},"fxﬁf
g = &in’ ", a; T-1_; by =W
’ DY 20 2ra 7




HMM (recap)

* Computational complexity
— Forward: K states, N time points => O(K?N)
— Backward: O(K?N)
— P(yJX,.) : Forward + sum of forward = O(K?N)
— P(y|X,.7) : Forward + backward + sum of forward = O(K?N)
— Viterbi: forward + O(K?N) updates of V = O(K?N)



HMM (recap)

e Other mutation of HMM
— JO-HMM
— Kalman Filter
— MEMM

— Spectral HMM (algorithm)



