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Learning Theory 

Zeyu Jin 



Outline 
•  Learning Theory 

–  Uniform bound 
–  |H| and VC(H) 
–  Insights 

•  GM 
–  Factorized probability 
–  D-separation 
–  Inference 

•  HMM (recap) 
–  Basic questions 
–  Algorithms 
–  Insight 



Learning Theory 

1.  The question 
–  Want to know how good our classifier is 
 
 
–  However, H is trained on some data; the randomness of 

data makes this “?” a distribution. Let’s try 

–  It is non-trivial 
 

errortrue(H ) = ?

P(errortrue(H ) = p) = ?, p∈ [0,1]



Learning Theory 

1.  The question 
–  With a family of models H of certain complexity, how 

many training samples R is needed in order to learn a 
model h with reasonable training time and sufficient 
accuracy on future data? 

 
–  We want answer  

errortrue(H (X
m )) = ?

Computationally efficient in polynomial time 



Learning Theory 

1.  The question 
–  Distribution of error rate 

–  Maybe we can try to get a uniform bound for this question 

P( errortrue(H )−EX[errortrue(H )] < ε) = ?

P(errortrue(H ) = p)
= E[P(errortrue(H (X)) = p | X = x)]

= P(errortrue(H (X)) = p | X = x)Ptrue(X = x)dx
X
∫∫∫



Learning Theory 

1.  The question 
–  Distribution of error rate 

–  Maybe we can try to get a uniform bound for this question 

–  Still extremely hard. Maybe bound this probability 

P( errortrue(H )−EX[errortrue(H )] < ε) = ?

P(errortrue(H ) = p)
= E[P(errortrue(H (X)) = p | X = x)]

= P(errortrue(H (X)) = p | X = x)Ptrue(X = x)dx
X
∫∫∫



Learning Theory 
1.  Uniform Bound 

–  Bound the probability of the bounded error 

–  Statisticians do have solution for this form! 
–  Three basic questions 

•  H is finite,                                    is 0 
•  H is finite,           is non-zero  
•  H is infinite 

P( errortrue(H )−EX[errortrue(H )] < ε)>1−δ

EX[errortrue(H )]= errortrain (H )
EX[errortrue(H )]= errortrain (H )

PAC 



Learning Theory 

2.  Solutions 
1)  H is finite,                                    is 0 

2)  H is finite,                                    is non-zero 

P( errortrue(H )− 0 < ε) ≥1−δ ε =
ln |H |+ ln(1 /δ)

| X |

EX[errortrue(H )]= errortrain (H )

EX[errortrue(H )]= errortrain (H )

P( errortrue(H )−EX[errortrue(H )] < ε)>1−δ

ε =
H + ln(1 /δ)
2 | X |



Learning Theory 

2.  Solutions 

3)  H is infinite 

ε =

P( errortrue(H )−EX[errortrue(H )] < ε)>1−δ



Learning Theory 

3.  Terms in this solutions 
–  For solution 1 and 2:  |H| = ? 
–  For solution 3: VC(H) = ? 



Learning Theory 

3.  Terms in this solutions 
–  For solution 1 and 2:  |H| = ? 
–  For solution 3: VC(H) = ? 

Instead of limiting the maximal depth of a decision tree, 
let’s assume n binary attributes and binary class 
 
What is |H| ? 



Learning Theory 

3.  Terms in this solutions 
–  For solution 1 and 2:  |H| = ? 
–  For solution 3: VC(H) = ? 

•  Find the maximal N 
•  Where there EXIST N points in the problem’s space 
•  s.t. ALL element of the superset of these points (2N) 
•  can be picked out by S 



Learning Theory 

3.  Terms in this solutions 
–  For solution 1 and 2:  |H| = ? 
–  For solution 3: VC(H) = ? 

What is the VC dimension of a 2D-circle? 
 
 
 

{(x, y) | x2 + y2 ≤ R2}



Learning Theory 

3.  Terms in this solutions 
–  For solution 1 and 2:  |H| = ? 
–  For solution 3: VC(H) = ? 

{(x, y) | x2 + y2 ≤ R2 \ (0, 0)}

What if the a circle plus a point? 
 
 
 



Learning Theory 

4.  Insights 
–  VC Dimension 

•  Find the maximal N 
•  Where there EXIST N points in the problem’s space 
•  s.t. ALL element of the superset of these points (2N) 
•  can be picked out by S 
SN(H) = The number of elements of the superset of these N points can 
be picked out by H 
 
 
SN(H) is not easy to obtain, but it can be shown that 
Where d is VC dimension  

 



Learning Theory 

4.  Insights 
–  Obtain error bound by simulation 

•  Known: marginal distribution of data D, true model p(Y|X) 
 
Repeat the following N times 
•  Draw m data from D for training; draw k >> m from D for test 
•  Draw yi for each xi from p(Y|X) 
•  Learn h based on your hypothesis space H 
•  Evaluate errortrue(h)-errortrain(h) on test data (or do it 

mathematically) 
Then you will get a histogram of error which approximates 
P(errortrue(h)). Solve 

P(errortrue(H )< ε) ≥1−δ



Learning Theory 

4.  Insights 
–  Connection 

P(errortrue(H )< ε) ≥1−δ

Confidence interval: with confidence 
 
we conclude that error of estimating errortrue is less than  

δ
ε



Bayesian Networks 

•  Bayes Net ó Factorized probability 
–  Write Factorized probability 



Bayesian Networks 

•  Bayes Net ó Factorized probability 
–  What’s the Bayes net for  

•  Naïve Bayes? 
•  Full Bayes? 
•  k-th order Markov Model 
•  Hidden Markov model 



Bayesian Networks 

•  Understand dependency in BN – D-separation 

X and Y are D-separated by Z  
 
If all the path from X to Y are blocked 

Maybe we lost one case in class 
 
 



Bayesian Networks 

•  Understand dependency in BN – D-separation 

Original Definition 

Bishop 8.2.2 



Bayesian Networks 

•  Understand dependency in BN – D-separation 

Descendent 



Bayesian Networks 

•  Understand dependency in BN – D-separation 

Exam problem TRUE/FALSE 



Bayesian Networks 

•  Understand dependency in BN – D-separation 

Exam problem TRUE/FALSE 

a)  Yes, blocked by on E on one path and G on 
another path 

b)  Yes, blocked by E 
c)  No, G is a descendent of E 
d)  No, the path JIEABCG is unblocked 
e)  Yes, blocked on both paths 
f)  No, path EFGC unblocked 
g)  Yes, EABC blocked by A, and EFGC 

blocked by G 

Key… 



Bayesian Networks 
•  Inference 

–  What is inference?  
the process of computing answers to queries about the 
distribution P defined by given BN 

•  Likelihood 
•  Conditional probability (we will see one example after this slide) 
•  Most probable assignment (most likely states sequence in HMM) 

–  Methods? 
•  Variable elimination, belief propogation (do exact calculation) 
•  Gibbs sampling (simulation) 



Bayesian Networks 

•  Inference 1: variable elimination 

Binary for all RV 

… 



Bayesian Networks 

•  Inference 2: sampling 
–  Naïve sampling:  

•  (A,B,C,D,E,F,G) each time from 
p(A,B,C,D,E,F,G)  

•  Calculate P(G|A=T) by counting 
•  Have problem with rare event  

–  Weighted sampling 
•  If P(A=T) is rare, just set A=T 

and sample (A=T,B,C,D,E,F,G) 
•  When calculating P(G|A=T), the 

number of (A=T,b,c,d,e,f,g) is 
weighted by p(A=T) 



HMM (recap) 

•  Static vs. time series 

Y X 

Yt Xt 

Yt-1 

Discriminative 

P(Y|X) 

P(Yt, Yt-1 … |Xt Xt-1 … ) 

Generative 

P(X,Y) 

P(Xt, Yt, Xt-1,Yt-1… 

Xt-1 
Conditioning on no 
variable, all Xs and Ys 
are correlated 

Conditional random field 



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

•  K: number of states 

•  M: number of observations 



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

Yt Xt 

Yt-1 Xt-1 

HMM is Generative 
 
Complete likelihood based on given parameters is 



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

P(yt|X1:t) = ? 
P(yt|X1:T) = ? 

Before that, we have the following tools 
 
1.  Forward probability 

2.  Backward probability  

argmaxy P(y1:T|X1:T) = ? 



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

P(yt|X1:t) = ? 
P(yt|X1:T) = ? 
argmaxy P(y1:T|X1:T) = ? 

p(yt = i | X1:t ) =
p(x1,..., xt, yt = i)
p(x1,…, xt )

=
αt

i

p(x1,…, xt )



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

P(yt|X1:t) = ? 
P(yt|X1:T) = ? 

?  

argmaxy P(y1:T|X1:T) = ? 



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

P(yt|X1:t) = ? 
P(yt|X1:T) = ? 
argmaxy P(y1:T|X1:T) = ? 

Viterbi 



HMM (recap) 

•  Basic questions 
1.  Parameters 
2.  Factorization 
3.  Inference 
4.  Learning 

E-step 

M-step 



HMM (recap) 

•  Computational complexity 
–  Forward: K states, N time points => O(K2N) 
–  Backward: O(K2N) 
–  P(yt|X1:t) : Forward + sum of forward = O(K2N) 
–  P(yt|X1:T) : Forward + backward + sum of forward = O(K2N) 
–  Viterbi: forward + O(K2N) updates of V = O(K2N) 



HMM (recap) 

•  Other mutation of HMM 
–  IO-HMM 
–  Kalman Filter  
–  MEMM 

–  Spectral HMM (algorithm) 


