
MLE and MAP Examples

1 Multinomial Distribution

Given some integer k > 1, let Θ be the set of vectors θ = (θ1, ..., θk) satisfying θi ≥ 0 and∑k
i=1 θi = 1. For any θ ∈ Θ we define the probability mass function

pθ(x) =

{ ∏k
i=1 θ

I(x=i)
i for x ∈ {1, 2, ..., k}

0 o.w.

Given n observations X1, ..., Xn ∈ {1, ..., k}, we would like to derive the maximum likelihood
estimate for the parameter θ under this model.

First, let’s write down the likelihood of the data for some θ ∈ Θ (recall that we have assumed
X1, ..., Xn ∈ {1, ..., k}, since otherwise there is no meaningful solution):

L(θ;X1, ..., Xn) =
n∏
j=1

pθ(Xj)

=
n∏
j=1

k∏
i=1

θ
I(Xj=i)
i

=
k∏
i=1

n∏
j=1

θ
I(Xj=i)
i

=
k∏
i=1

θSi
i

where, for brevity, we have defined Si =
∑n

j=1 I(Xj = i). Our goal is to maximize L with respect
to θ, subject to the constraint that θ ∈ Θ. Equivalently, we can maximize the log likelihood:

logL(θ;X1, ..., Xn) =
k∑
i=1

Si log θi.

Introducing a Lagrange multiplier for the constraint
∑k

i=1 θi = 1, we have

Λ(θ, λ) =

k∑
i=1

Si log θi + λ

(
k∑
i=1

θi − 1

)
.
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(we need not worry about the positivity constraints, since the solution will satisfy those regardless).
Differentiating with respect to θi and λ, for each i = 1, ..., k we have

∂Λ

∂θi
=
Si
θi

+ λ

and ∂Λ
∂λ =

∑k
i=1 θi − 1. Setting the latter partial derivative to 0 gives back the original constraint∑k

i=1 θi = 1, as expected. Also for i = 1, ..., k,

∂Λ

∂θi
= 0 ⇒ Si

θ̂i
= −λ

⇒ θ̂i =
Si
−λ

. (1)

By definition of Si we have

k∑
i=1

Si
−λ

=

∑k
i=1 Si
−λ

=
n

−λ
which implies that in order for the summation constraint on θi to be satisfied, we require n

−λ = 1,
i.e. λ = −n.

Plugging this value for λ into (1),

θ̂i =
Si
n

=
1

n

n∑
j=1

Xj

i.e. the maximum likelihood estimates for the elements of θ are simply the intuitively obvious
estimators – the empirical means.

2 Multivariate Normal (unknown mean and variance)

The PDF of the multivariate normal in d dimensions is

p(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
where the parameters are the mean vector µ ∈ Rd, and the covariance matrix Σ ∈ Rd×d, which
must be symmetric positive definite.

2.1 MLE

The likelihood function given X1, ..., Xn ∈ Rd is

L(µ,Σ;X1, ..., Xn) = c1|Σ|−n/2
n∏
i=1

exp

{
−1

2
(Xi − µ)TΣ−1(Xi − µ)

}

= c1|Σ|−n/2 exp

{
−1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

}

2



where c1 = (2π)−nd/2 is a constant independent of the data and parameters and can be ignored.
The log likelihood is

logL(µ,Σ;X1, ..., Xn) = −n
2

log |Σ| − 1

2

(
n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

)
+ c2

where c2 is another inconsequential constant.
It is easiest to first maximize this with respect to µ. The corresponding partial derivative is

∂

∂µ
logL = −

n∑
i=1

Σ−1(Xi − µ)

= −Σ−1
n∑
i=1

(Xi − µ)

= nΣ−1

(
µ− 1

n

n∑
i=1

Xi

)

which implies

µ̂ =
1

n

n∑
i=1

Xi.

The partial derivative of the log likelihood with respect to Σ is

∂

∂Σ
logL = −n

2

1

|Σ|
|Σ|Σ−1 − 1

2

(
n∑
i=1

−Σ−1(Xi − µ)(Xi − µ)TΣ−1

)

= −n
2

Σ−1 +
1

2
Σ−1

(
n∑
i=1

(Xi − µ)(Xi − µ)T

)
Σ−1.

Equating this to 0 and plugging in the estimate µ̂, we see that the estimator Σ̂ must solve the
equation

nΣ̂−1 = Σ̂−1

(
n∑
i=1

(Xi − µ̂)(Xi − µ̂)T

)
Σ̂−1.

It is easy to see that a solution for Σ̂ is

Σ̂ =
1

n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T ,

which is known as the sample covariance matrix.

2.2 MAP under the conjugate prior

The conjugate prior for the mean and covariance of a multivariate normal is sometimes called the
Normal-inverse-Wishart distribution and has the density

f(µ,Σ|µ0, β,Ψ, ν) = p(µ|µ0, βΣ)w(Σ|Ψ, ν)
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where p is the density of the multivariate normal distribution, and w is the density of the inverse-
Wishart distribution given by

w(Σ|Ψ, ν) =
|Ψ|ν/2

2νd/2Γd
(
ν
2

) |Σ|−(ν+d+1)/2 exp

{
−1

2
Tr(ΨΣ−1)

}
where Γd is the multivariate Gamma function, and Tr(·) denotes the trace of a matrix. The
parameters of the Normal-inverse-Wishart are µ0 ∈ Rd, β ∈ R+, Ψ ∈ Rd×d positive definite, and
ν ∈ R with ν > d− 1. We need to

1. calculate the posterior distribution of µ and Σ assuming this prior and n observationsX1, ..., Xn ∈
Rd;

2. convince ourselves that the posterior is indeed a Normal-inverse-Wishart distribution and find
its parameters;

3. and finally find the values for µ and Σ that maximize the posterior distribution.

2.2.1 Calculating the posterior distribution

We have

f(µ,Σ|µ0, β,Ψ, ν,X1, ..., Xn) ∝

(
n∏
i=1

p(Xi|µ,Σ)

)
f(µ,Σ|µ0, β,Ψ, ν)

where we omit the term in the denominator which is a finite, non-zero constant that doesn’t depend
on µ or Σ, since any such term does not affect the shape of the posterior distribution and only
factors in the normalizing constant that ensures the posterior integrates to 1. Continuing from
above,

f(µ,Σ|µ0, β,Ψ, ν,X1, ..., Xn) ∝

(
n∏
i=1

1

(2π)d/2|Σ|1/2
exp

{
−1

2
(Xi − µ)TΣ−1(Xi − µ)

})
× (2)

1

(2π)d/2|βΣ|1/2
exp

{
−1

2
(µ− µ0)T (βΣ)−1(µ− µ0)

}
×

|Ψ|ν/2

2νd/2Γd
(
ν
2

) |Σ|−(ν+d+1)/2 exp

{
−1

2
Tr(ΨΣ−1)

}
(3)

∝ exp

{
−1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

}
×

exp

{
−1

2
(µ− µ0)T (βΣ)−1(µ− µ0)

}
×

|Σ|−(ν+n+d+2)/2 exp

{
−1

2
Tr(ΨΣ−1)

}
. (4)

While messy, this fully defines the posterior distribution.
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2.2.2 The posterior is a Normal-inverse-Wishart distribution

Our goal now is to find µ′0, β
′,Ψ′, ν ′ such that (4) looks like a Normal-inverse-Wishart density with

those parameters. First we write out explicitly the form of the Normal-inverse-Wishart density, up
to constants, for these as of yet unknown parameters:

f(µ,Σ|µ′0, β′,Ψ′, ν ′) ∝ exp

{
−1

2
(µ− µ′0)T (β′Σ)−1(µ− µ′0)

}
×

|Σ|−(ν′+d+2)/2 exp

{
−1

2
Tr(Ψ′Σ−1)

}
. (5)

It is immediately clear that the only value ν ′ can take to satisfy f(µ,Σ|µ0, β,Ψ, ν,X1, ..., Xn) =
f(µ,Σ|µ′0, β′,Ψ′, ν ′) is

ν ′ = ν + d.

Furthermore we see that for this value of ν ′ the term involving |Σ| in (4) is accounted for in (5).
So now we only need find µ′0, β

′,Ψ′ such that

exp

{
−1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)

}
exp

{
−1

2
(µ− µ0)T (βΣ)−1(µ− µ0)

}
×

× exp

{
−1

2
Tr(ΨΣ−1)

}
(6)

is equal to

exp

{
−1

2
(µ− µ′0)T (β′Σ)−1(µ− µ′0)

}
exp

{
−1

2
Tr(Ψ′Σ−1)

}
(7)

up to a multiplicative constant independent of µ and Σ (note that the terms involving |Σ| are
already equalized and needn’t be considered any more).

By taking the log of each quantity and multiplying by −2, we see that the above problem is
equivalent to finding µ′0, β

′,Ψ′ such that
n∑
i=1

(Xi − µ)TΣ−1(Xi − µ) + (µ− µ0)T (βΣ)−1(µ− µ0) + Tr(ΨΣ−1) (8)

is equal to

(µ− µ′0)T (β′Σ)−1(µ− µ′0) + Tr(Ψ′Σ−1) (9)

up to an additive constant independent of µ and Σ.
Defining S =

∑n
i=1Xi, we can rewrite (8) as

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ) + (µ− µ0)T (βΣ)−1(µ− µ0) + Tr(ΨΣ−1)

=
1

β
µTΣ−1µ− 2

1

β
µTΣ−1µ0 +

1

β
µT0 Σ−1µ0+

+

n∑
i=1

XT
i Σ−1Xi − 2µTΣ−1S + nµTΣ−1µ+ Tr(ΨΣ−1)

=

(
1

β
+ n

)
µTΣ−1µ− 2µTΣ−1

(
1

β
µ0 + S

)
+ (10)

+
1

β
µT0 Σ−1µ0 +

n∑
i=1

XT
i Σ−1Xi + Tr(ΨΣ−1). (11)
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Notice each appearance of µ is now in the two terms on line (10), which look like the first two
terms of the expansion of a quadratic form similar to the first term in (9). In order to “complete
the square”, we must set

β′ =
1

1
β + n

so that the first term on line (10) is equal to the quadratic term (in µ) from the expansion of
(µ− µ′0)T (β′Σ)−1(µ− µ′0). The linear term in µ on line (10) now implies that we must set

µ′0 = β′
(

1

β
µ0 + S

)
=

1
βµ0 + S

1
β + n

.

Continuing from line (11) we have(
1

β
+ n

)
µTΣ−1µ− 2µTΣ−1

(
1

β
µ0 + S

)
+

1

β
µT0 Σ−1µ0 +

n∑
i=1

XT
i Σ−1Xi + Tr(ΨΣ−1) =

= µT (β′Σ)−1µ− 2µT (β′Σ)−1µ′0 + µ′T0 (β′Σ)−1µ′0 − µ′T0 (β′Σ)−1µ′0+

+
1

β
µT0 Σ−1µ0 +

n∑
i=1

XT
i Σ−1Xi + Tr(ΨΣ−1) =

= (µ− µ′0)T (β′Σ)−1(µ− µ′0)− µ′T0 (β′Σ)−1µ′0 +
1

β
µT0 Σ−1µ0 +

n∑
i=1

XT
i Σ−1Xi + Tr(ΨΣ−1)

and since the (µ − µ′0)T (β′Σ)−1(µ − µ′0) term is completed we can drop it from the last line and
from (9). I.e. we now only need find Ψ′ such that

−µ′T0 (β′Σ)−1µ′0 +
1

β
µT0 Σ−1µ0 +

n∑
i=1

XT
i Σ−1Xi + Tr(ΨΣ−1) (12)

equals

Tr(Ψ′Σ−1)

up to constants.
Continuing from (12):

− Tr(µ′T0 (β′Σ)−1µ′0) + Tr

(
1

β
µT0 Σ−1µ0

)
+

n∑
i=1

Tr
(
XT
i Σ−1Xi

)
+ Tr(ΨΣ−1) =

= −Tr

(
1

β′
µ′0µ

′T
0 Σ−1

)
+ Tr

(
1

β
µ0µ

T
0 Σ−1

)
+

n∑
i=1

Tr
(
XiX

T
i Σ−1

)
+ Tr(ΨΣ−1) =

= Tr

([
Ψ +

1

β
µ0µ

T
0 +

n∑
i=1

XiX
T
i −

1

β′
µ′0µ

′T
0

]
Σ−1

)
(13)

so we set

Ψ′ = Ψ +
1

β
µ0µ

T
0 +

n∑
i=1

XiX
T
i −

1

β′
µ′0µ

′T
0 .

After simplifying this a bit, you should be able to recognize the empirical means and covariance
matrix:

Ψ′ = Ψ +

n∑
i=1

(
Xi −

1

n
S

)(
Xi −

1

n
S

)T
+

n
β

1
β + n

(
1

n
S − µ0

)(
1

n
S − µ0

)T
.
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2.2.3 Maximizing the posterior

In the last section we showed that the posterior distribution of µ and Σ after n observations
under a Normal-inverse-Wishart distribution is again a Normal-inverse-Wishart distribution with
parameters

µ′0 =

1
βµ0 + S

1
β + n

,

β′ =
1

1
β + n

,

Ψ′ = Ψ +

n∑
i=1

(
Xi −

1

n
S

)(
Xi −

1

n
S

)T
+

n
β

1
β + n

(
1

n
S − µ0

)(
1

n
S − µ0

)T
,

and
ν ′ = ν + d,

where S =
∑n

i=1Xi. Recall that the density of this distribution is

f(µ,Σ|µ′0, β′,Ψ′, ν ′) = p(µ|µ′0, β′Σ)w(Σ|Ψ′, ν ′) (14)

where p is the density of the multivariate normal distribution, and w is the density of the inverse-
Wishart distribution given by

w(Σ|Ψ′, ν ′) =
|Ψ′|ν′/2

2ν′d/2Γd
(
ν′

2

) |Σ|−(ν′+d+1)/2 exp

{
−1

2
Tr(Ψ′Σ−1)

}
.

Since µ only appears in the first term on the right hand side of 14, it is obvious that the value
of µ that maximizes the posterior is also the value that maximizes p(µ|µ′0, β′Σ), which, of course,
is µ′0:

µ̂ =

1
βµ0 + S

1
β + n

.

We can think of this quantity as the maximum likelihood estimator for the mean of the normal
distribution if, along with X1, ..., Xn, we had also observed 1/β-many samples, all equal to µ0.

Maximizing the posterior with respect to Σ is equivalent to minimizing

J(Σ) = (ν ′ + d+ 2) log |Σ|+ (µ̂− µ′0)T (β′Σ)−1(µ̂− µ′0) + Tr(Ψ′Σ−1) (15)

where we have plugged in the MAP value for µ;

∂J

∂Σ
= (ν ′ + d+ 2)Σ−1 − 1

β′
Σ−1(µ̂− µ′0)(µ̂− µ′0)TΣ−1 − Σ−1Ψ′Σ−1 (16)

and the maximizer is

Σ̂ =
1

β′(ν ′ + d+ 2)
(µ̂− µ′0)(µ̂− µ′0)T +

1

ν ′ + d+ 2
Ψ′. (17)
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