
Name:      Andrew ID: 

 

 

Final Exam, 10701 Machine Learning, Spring 2009 
 

 

 

 

- The exam is open-book, open-notes, no electronics other than 

calculators. 

 

- The maximum possible score on this exam is 100. You have 3 hours. 

 

- Don’t spend too much time on any one problem. If you get stuck on 

any of the problems, move on to another one and come back to that 

problem if you have time.  

 

Good luck! 
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Question 1 – Short Questions 
 

(1). Let X, Y and Z be random variables. X ~ Unif(0,1).  Let 0 < a < b < 1 

 
 

 
 

Is Y & Z independent ? Show why / why not ? 

Answer: 

Y & Z are not independent. This is because P(Y,Z) != P(Y) * P(Z) 

Y Z P(Y) P(Z) P(Y)P(Z) P(Y,Z) 

0 0 1-a b b-ab b-a 

0 1 1-a 1-b 1-a-b+ab 1-b 

1 0 a b ab a 

1 1 a 1-b a-ab 0 

 

Find EY ( Y | Z = z ) for each value of z. 

Z = 0 

E(Y| Z = 0) =   0 P(Y=0|Z=0) + 1 P(Y=1|Z=0) 

         =   0 + 1 * a / b = a / b 

E(Y| Z = 1) =  0 P(Y=0|Z=0) + 1 P(Y=1|Z=0) = 0 

 

 

(2). We are trying to learn regression parameters for a dataset which we know was 

generated from a polynomial of a certain degree, but we do not know what this 

degree is. Assume the data was actually generated from a polynomial of degree 5 

with some added Gaussian noise (that is  y = w0+w1x+w2x
2
+w3x

3
+w4x

4
+w5x

5
 + ε , 

ε~N(0,1)). 

For training we have 100 {x,y} pairs and for testing we are using an additional set of 

100 {x,y} pairs. Since we do not know the degree of the polynomial we learn two 

models from the data. Model A learns parameters for a polynomial of degree 4 and 

model B learns parameters for a polynomial of degree 6. Which of these two models 

is likely to fit the test data better? 

 

Answer: Degree 6 polynomial. Since the model is a degree 5 polynomial and we 

have enough training data, the model we learn for a six degree polynomial will likely 

fit a very small coefficient for x
6
 . Thus, even though it is a six degree polynomial it 



will actually behave in a very similar way to a fifth degree polynomial which is the 

correct model leading to better fit to the data. 

 

 

 

 

(3). What is the VC dimension for Linear Support Vector Machines in d-dimensional 

space? 

Answer: d+1 

 

 

(4). True or false? Any decision boundary that we get from a generative model with 

class-conditional Gaussian distributions could in principle be reproduced with an 

SVM and a polynomial kernel. 

 

True! In fact, since class-conditional Gaussians always yield quadratic decision 

boundaries, they can be reproduced with an SVM with kernel of degree less than or 

equal to two. 

 

(5). True or false? AdaBoost will eventually reach zero training error, regardless of the 

type of weak classifier it uses, provided enough weak classifiers have been 

combined. 

 

False! If the data is not separable by a linear combination of the weak classifiers, 

AdaBoost can’t achieve zero training error. 

 

 

(6). How can we determine the appropriate number of states for a Hidden Markov 

model? 

 

Answer:  

One method is to use cross validation. While more states would fit the training data 

well, adding more states may reduce transition probabilities leading to lower 

likelihood for the test data. 

 

(7). 
�� �������

Let a configuration of the k means algorithm correspond to the k way 

partition (on the set of instances to be clustered) generated by the clustering at the 

end of each iteration.  Is it possible for the k-means algorithm to revisit a 

configuration?  Justify how your answer proves that the k means algorithm 

converges in a finite number of steps. 



 

 

Answer: Since the k means algorithm converges if the k way partition does not 

change in successive iterations, thus the k way partition has to change after every 

iteration. As the mean squared error monotonically decreases it is thus impossible to 

revisit a configuration. Thus eventually the k means algorithm will run out of 

configurations, and converge.  

NB: The maximum no of iterations corresponds to the no of k way partitions possible 

on a set of n objects : S(n,k) where S are Stirling numbers of the 2
nd

 kind. 

 

 

 



 

(8). Suppose you are given the following <x,y> pairs. You will simulate the k-means 

algorithm and Gaussian Mixture Models learning algorithm to identify TWO clusters 

in the data. 

 

 
 

 

 

Data # x y 

1 ���� ����
2 ���� ����
3 ��	� ���	
4 ��	� ����
5 ���� ����
6 
��� 	���
7 
��� 	���
8 ���
 	���
9 

���� 	���
10 

	��� ����
 

 

Suppose you are given initial assignment cluster center as {cluster1: #1}, {cluster2: #10} 

– the first data point is used as the first cluster center and the 10-th as the second cluster 

center.  Please simulate the k-means (k=2) algorithm for ONE iteration. What are the 



cluster assignments after ONE iteration? Assume k-means uses Euclidean distance. What 

are the cluster assignments until convergence? (Fill in the table below) 

 

 

 

Data # Cluster Assignment after One 

Iteration 

Cluster Assignment after 

convergence 

1 1 1 

2 1 1 

3 1 1 

4 1 1 

5 1 1 

6 2 2 

7 2 2 

8 2 1 

9 2 2 

10 2 2 

 

 

 

 

(9). Assume we would like to use spectral clustering to cluster n elements. We are using 

the k nearest neighbor method we discussed for generating the graph that would be 

used in the clustering procedure. Following this process: 

What is the maximum number of nodes that a single node is connected to? 

Answer: n-1 

 

What is the minimum number of nodes that a single node is connected to?  

 

Answer: k 

 

 

 

(10). Can SVD and PCA produce the same projection result? Yes/No? If YES, under 

what condition they are the same? If NO, please explain why? (briefly) 

 

Answer:  

Yes. When the data has a zero mean vector, otherwise you have to center the data 

first before taking SVD. 

 

 

 



(11). Let  be the independent variable, and be the dependent variable.  We will 

use  to predict , using several models of regression. 

M1 :   

M2:    

M3:    

where we fit the constants a, b and c from data. We assume that Eta~N(0,σ
2
) and σ

2  

is estimated from the training data.  

Let us choose a model from M1, M2 and M3 using the AIC.  

 

a. How many degrees of freedom does each of the three models (M1, M2, ) M3 

have? 

Answer: 

Degrees of freedom for Model 1 = 2 (a and eta) 

Degrees of freedom for Model 1 = 3 (a, b and eta) 

Degrees of freedom for Model 1 = 4 (a,b, c and eta) 

 

 

b. Let log likelihood(data| ML parameters of model M1) = -130.4,  

 log likelihood(data| ML parameters of model M2) = -108.1, 

  log likelihood(data| ML parameters of model M3) = -107.99 

Based on the ML framework, which model should we choose ? 

 

According to the ML framework, we should choose the model with the max 

likelihood, and also max log likelihood : M3 

 

c. 

Based on the AIC, which model should we choose? Does the choice change if we 

observe the same likelihoods, but learn that M1, M2 and M3 all had 2 more degrees 

of freedom ? 

According to the ML framework, we should choose the model with the max 

likelihood, and also max log likelihood : M3 

AIC score = log likelihood(data|model) – degrees of freedom 

AIC score for M1 = -130.4 – 2 

AIC score for M2 = -108.1 - 3 

AIC score for M3 = -107.99 - 4 

Thus, under maximizing AIC criterion, M2 should be chosen. If an equal number of 

degrees of freedom are added to every model, the model choice does not change if 

the likelihd is remains unchanged, as an equal number is decreased from each AIC 

score. 



 

 

 

 

 

 

 



Question 2 – Nearest Neighbors [8 Points] 
 

Let us try and classify data points in 2D Euclidean space.  We are given n instances of 

such points P1, P2, …, Pn and the corresponding category for each point C1, C2, Cn  

[where C1, C2, .. Cn take values from the set of all possible class labels].  Under the k 

nearest neighbors classification scheme, each new element Q  is simply categorized by a 

majority vote among its k nearest neighbors in instance space. The 1-NN is a simple 

variant of this which divides up the input space for classification purposes into a convex 

region (see figure below for the 1NN decision boundaries under the Euclidean distance 

measure), each corresponding to a point in the instance set.   

 

 

 
 

(1). Is it possible to build a decision tree (with decisions at each node of the form “is x > 

a”,  “is x < b”, “is y > c”, or “is y < d” for any real constants a,b,c,d)  which classifies 

exactly according to the 1-NN scheme using the Euclidean distance measure ? If so, 

explain how. If not, explain why not.  

 

No. the decision boundaries for 1 - NN correspond to the cell boundaries of each 

point (see image) and are not necc parallel to the coordinate axes. The decision tree 

boundaries would always be parallel to coordinate axes based on the kinds of qns 

asked at each node of the decision tree. To approximate a gradient by decision trees 



could take an arbitrary (uncountable) number of decisions, not possible in a decision 

tree. 

 

 

 

(2). Now  assume that the distance measure is not explicitly specified to you.  Instead, 

you are given a “black box” where you input a set of instances P1, P2, .. Pn and a 

new example Q, and the black box outputs the nearest neighbor of Q, say Pi and its 

corresponding class label Ci. Is it possible to construct a k-NN classification 

algorithm based on this black box alone? If so, how and if not, why not?  

 

 

Yes. First use the 1NN algorithm on the instance set for the new example, note the nearest 

neighbor and it s class and throw it out of the instance set. Use 1NN now with the reduced 

instance set and the example to be classified and again note the nearest neighbor and its class 

and throw it out of the instance set.  Repeat this process k times, take a majority vote among 

the noted classes, and classify the new example accordingly. 

 

 

 

 

 

 

(3). If the black box returns the j nearest neighbors (and their corresponding class labels) instead 

of the single most nearest neighbor (assume j != k) , is it possible to construct a k-NN 

classification algorithm based on the black box ? If so how, and if not why not ? 

 
If j < k, then use the algorithm  floor(k/j) times to obtain the j * floor(k/j) nearest neighbors 

and their classes. To obtain the remaining k – j * floor(k/j)  nearest neighbors use the j NN 

one more time and note the final batch of j nearest neighbors. Now to order the last set of j 

nearest neighbors and choose the top k – j * floor(k/j) nearest neighbors from them. 

To do this, we merely need to construct an instance set using the final batch of j nearest 

neighbors and any j – (k – j*floor(k/j) ) nearest neighbors from the set of the top j nearest 

neighbors. The (k – j*floor(k/j)) elements from the last batch which get picked as the j 

nearest neighbors are thus the top k – j *floor(k/j) elements in the last batch of j nearest 

neighbors that we needed to identify. 

 

If j > k, we cannot do k-NN using the j-NN algorithm black box. 

  
 

 



 

Question 3 –Decision Trees 
 

We would like to construct a decision tree for n vectors each with m attributes. 

 

(1). Assume that there exists i and j such that for ALL vectors X in our training data, 

these attributes are equal (xi=xj for all vectors where xi is the i’th entry in the 

vector X). Assume that we break ties between them by using xi (that is, if both 

lead to the same conditional entropy we would use xi). Can removing attribute j 

from our training data change the decision tree we learn for this dataset? Explain 

briefly. 

 

Answer: No, removing attribute j would not change the decision tree we learn. Since i 

and j are the same attribute j cannot add any information that is not already used in 

attribute i .  

 

(2). Assume we have two equal vectors X and Z in our training set (that is, all 

attributes of X and Z including the labels are exactly the same). Can removing Z 

from our training data change the decision tree we learn for this dataset? Explain 

briefly. 

 

Answer: Yes, the decision tree can change. The conditional entropy in each split depends 

on the set of samples and copying a vector twice may change the distribution leading to a 

selection of a different attribute to split on. 

 

For the next set of questions consider a dataset with continuous attributes. For such 

attributes we said in class we can use threshold splits to determine the best partition 

for a set of vectors. Assume we are at the root and we have n vectors, all with 

different  (continuous) values for attribute x1. 

 

(3). Assume we would like to use binary splits. For such splits we need to choose a 

value a and split the data by propagating all vectors with x1<a to the left and 

those with x1 ≥ a to the right. For any value of a we consider we would like to 

have at least one vector assigned to each of the two branches of the split. How 

many values of a do we need to consider?  

 

Answer: n-1. We order the values for attribute x1 and test all values between two 

points in the ordering.  

 

 

(4). Assume we would like to use three way splits. For such splits we need to chose 

values a and b such that a < b and split the data into three sets: x1 < a, a ≤ x1 < b, 

x1 ≥  b. Again we require that for any value of a and b that we consider at least 

one vector would be assigned to each of the three branches. How many {a,b}  do 

we need to consider?   

 



Answer: Any two of the values selected in (3) would 

at least one vector assigned to each leaf. So the answer is 

 

(5). For a given three way split at the root (parameterized by an {

reconstruct the same split with a tree that uses only 

      If no briefly explain why. 

      If yes, show the tree that leads to the same set of leaves with the same nodes in 

each leaf as the three way split.

 

Answer: Yes. See figure.  

 

 

(6). If you answered ‘no’ to 5 explain which type of data can be correctly separated 

(classified) by a three way split tree but cannot be correctly classified using a 

binary split tree.  

If you answered ‘yes’ to 5 explain why it may still be beneficial to learn

way split tree rather than a binary split tree.  

 

Answer: The binary split search for the best initial split and only then looks for 

the second split. Thus, it’s a greedy procedure. The three way splits evaluates all 

possible pairs together leadi

the expense of a larger run time.

 

 

Answer: Any two of the values selected in (3) would lead to a three way split that has 

at least one vector assigned to each leaf. So the answer is 
2
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2
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For a given three way split at the root (parameterized by an {a,b}  pair) can we 

reconstruct the same split with a tree that uses only binary splits?  

If no briefly explain why.  

If yes, show the tree that leads to the same set of leaves with the same nodes in 

each leaf as the three way split. 

 

If you answered ‘no’ to 5 explain which type of data can be correctly separated 

(classified) by a three way split tree but cannot be correctly classified using a 

If you answered ‘yes’ to 5 explain why it may still be beneficial to learn a three 

way split tree rather than a binary split tree.   

Answer: The binary split search for the best initial split and only then looks for 

the second split. Thus, it’s a greedy procedure. The three way splits evaluates all 

possible pairs together leading to a better three way split. Of course, this comes at 

the expense of a larger run time. 

lead to a three way split that has 

)2
   

pair) can we 

If yes, show the tree that leads to the same set of leaves with the same nodes in 

If you answered ‘no’ to 5 explain which type of data can be correctly separated 

(classified) by a three way split tree but cannot be correctly classified using a 

a three 

Answer: The binary split search for the best initial split and only then looks for 

the second split. Thus, it’s a greedy procedure. The three way splits evaluates all 

ng to a better three way split. Of course, this comes at 



 

Question 4 – Support Vector Machine 
 

Suppose we only have four training examples in two dimensions (see figure above): 

positive examples at x1 = [0, 0] , x2 = [2, 2] and negative examples at x3 = [h, 1] , x4 = 

[0, 3], where we treat 0 ≤ h ≤ 3 as a parameter.  

(1). How large can h ≥ 0 be so that the training points are still linearly separable?  

Up to (excluding) h=1 

 

(2). Does the orientation of the maximum margin decision boundary change as a function 

of h when the points are separable (Y/N)?  

No, because x1, x2, x3 remain the support vectors. 

 

(3). What is the margin achieved by the maximum margin boundary as a function of h? 

[Hint : It turns out that the margin as a function of h is a linear function.] 

m(h)=0 for h=1 and m(h)=sqrt(2)/2 for h=0 à  m(h)=sqrt(2)/2 – sqrt(2)/2 * h 

 

(4). Assume that we can only observe the second component of the input vectors. Without 

the other component, the labeled training points reduce to (0,y = 1), (2,y = 1), (1,y = -

1), and (3,y =-1). What is the lowest order p of polynomial kernel that would allow us 

to correctly classify these points? 

The classes of the points on the x2-projected line observe the order 1,-1,1,-1. Therefore, 

we need a cubic polynomial. 



 

Question 5 –HMM 
 

In class we used the forward term (which we defined as α) to compute the following 

probability for a set of observed outputs: 

 

P(O1 … OT)  

 

In this problem we will use a different term for deriving this probability and will use this 

new derivation to compute some probabilities for an example HMM. 

 
(1). Let 

  

v i

t
= p(O1KOT | qt = si) . Write a formula for P(O1 … OT) using only v i

t
  and pt(i) 

which we defined in class (in class we defined pt(i) = p(qt = si)). 

 

 

Answer: 

  

p(O1KOT ) = p(O1KOT ,qt = si)
i

∑

= p(O1KOT | qt = si)p(
i

∑

= v i

t
pt (i)

i

∑

qt = si)
 

 

 

 

 



 

For the next two questions consider the HMM in figure 1. Initial and transition 

probabilities are listed next to the corresponding edges. Emission probabilities and the 

states’ names are listed inside each node. For example, for state S2 the emission 

probabilities are: 0.5 for A and 0.5 for B. 

 

(2). Use only v i

t
  and pt(i) as in (1) to compute p(O1 =B,…, O200 = B) (the probability of 

observing 200 B’s in a row). You need to write an appropriate t for this computation 

and then explicitly derive the values of v i

t
  and pt(i) for the t that you have chosen and 

show how you can use these values to compute the probability of this output. 

Hint: for computing pt(i) note that the transitions to and from S2 and S3 are symmetric 

and so for any t, pt(S2)= pt(S3). 

 

 

 

Answer: We will use t=200. For this t we have p(O1 =B,…, O200 = B | S3) = 0 and  

p(O1 =B,…, O200 = B | S1) = p(O1 =B,…, O200 = B | S2) = (1/2)
200

 

Also, p200(1)=(1/2)
199 

and, based on the hint p200(2) = (1- (1/2)
199 

)/2 

 

Putting this together we get: (1/2)
399  

+ (1/2)
201

 (1- (1/2)
199 

) 

 

 

 

 

 

 

 

 

 

 

 

 

(3). Use only v i

t
  and pt(i) as in (1) to compute p(O1 =A,…, O200 = A) (the probability of 

observing 200 A’s in a row). Again, you would need to find an appropriate t for this 

computation. However, for this part you can use v1

t  for the t that you have chosen in 

your solution (that is, you do not need to derive the value of v1

t ). Note that this applies 

only to v1

t . You would still need to derive the actual values of v2

t
  and v3

t
 and pt(i) (for 

all i) for the t that you have chosen and show how you can use these values to 

compute the probability of this output 

 

Hint – the t for (3) may be different from the t you selected for (2). 

 

Answer: We will select t=2 for this part. For this t we have  

p(O1 =A,…, O200 = A | q2=S2) = (1/2)
200 

p(O1 =A,…, O200 = A | q2=S3) = (1/2) 



p(O1 =B,…, O200 = B | q2=S1) = v1

2  

 

and 

p2(1) =0.5, p2(2)= p2(3)=0.25 

 

Putting it together we get: 

 

0.5 v1

2 + (1/2)
202 

+ (1/2)
3
 



 

Question 6 – Markov Decision Process 
 

You are given the following Markov decision process, where r denotes the reward at each 

state  : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Which action, A or B, maximizes our expected reward on the following turn, for the 

starting state State 2 ?  

Action A 

 

2. Which action from State 2 maximizes the total expected discounted future reward, 

with a discount factor γ of 0.9? What is the expected discounted future reward for 

each action? 
Action B: 

R(A) = sum_i=0^infty 3*γ
2i+1 

+ 0*γ
2i

 = 3γ sum_k=0^infty (γ
2
)
k
= 3 γ/(1- γ

2
) = 14.21 

R(B) = sum_i=1^infty .5[3 γ
i
 +1 γ

i
] = 2 sum_i=1^infty γ

i
 = 2/(1-γ) – 2 = 18 

 

3. For what value of γ does the expected discounted future reward for each action from 

State 2 become equal ? 

3 γ/(1- γ
2
) = 2/(1-γ) – 2 iff 3 γ = 2 (1+γ) – 2 (1+γ) (1-γ) iff 0 = -γ + 2 γ

2
 iff γ=1/2  

(since 0 < γ < 1) 



Question 7 –Reinforcement Learning 
 

Consider the RL model in Figure 1 below. Assume n > 1000. All states accept S1 have 

only one possible action with a deterministic outcome (transition probability of 1). State 

S1 has two possible actions, A and B, each with a deterministic outcome (A always leads 

to S2 and B always leads to S0 ). Assume a discount factor of γ = 0.5.  

To learn this model we will use Q learning with α=1. All Q functions for all states are 

initialized to 0. Whenever we reach state S1 we use our current Q function estimate to 

chose the action leading to the highest long term pay. We break ties by choosing action 

A. We start at state S1 . 

 
 

(1). After 1 step, what are Q(S1, A) and Q(S1, B)? 

 

 

Answer: Q(S1, A)=1 and Q(S1, B) = 0 

 

 

(2). After 5 steps, what are Q(S1, A) and Q(S1, B)? 

 

 

Answer: Q(S1, A)=1 and Q(S1, B) = 0 

 

 

 

 



(3). After n+5 steps, what are Q(S1, A) and Q(S1, B)? 

 

 

Answer: Q(S1, A)=1.5 and Q(S1, B) = 0 

 

 

(4). When our Q learning converges, what are the convergence values for Q(S1, A) 

and Q(S1, B)? What is the convergence value for Q(S2, right)? 

 

 

Answer: Note, since we are breaking ties by going right all states are symmetric so 

when we converge we have: Q*(S1, A)=1+ 0.5Q*(S2, right)=1+0.5 Q*(S1, A) and so: 

 

Q(S1, A)=2, Q(S1, B) = 0, Q(S2, right)=2 

 

 

 

(5). Now, lets treat this as a MDP and compute J* using value iteration. What is 

J*(S1)?  

 

 

Answer: We first compute J*(S0). J*(S0) = 10+0.5J*(S0) and so J*(S0) = 20. Now,  

J*(S1) = 1 + 0.5 J*(S0) = 11 

 

 

(6). If we use ε = 0.01 how many iteration do we need for J* to converge for all 

states? 

 

 

Answer: In this case the state that we converge the slowest is S0 since it receives the 

largest increase at each iteration (S1) will converge at a similar rate and all other 

states would converge at least as fast, most faster). In iteration k of the value iteration 

we increase J*(S0)  by (10/2
k
). So in order to determine how many iteration we need 

for  ε = 0.01 we need to find the smallest k s.t. (10/2
k
) < (1/100) which leads to k=10.   



 

Question 8 –Graphical Models 

 

Consider the following undirected Graphical Model on x, y and z. All three variables can 

take values in {-1, 1}. 

 

 
The associated potential functions are given as: 

 

 

 
 

(1). What is the posterior marginal probability ? 

 

Answer:  

 

 

 

 

 

 
 

 

 

 

 

 

 

x 

y z 



 

 

(2). Consider the following directed Graphical Model 

 

Is there an undirected Graphical Model for x, y and z, with the same set of probabilistic 

dependency/independency? If YES, please draw the model. If NO, please explain briefly 

which dependency/independency cannot be modeled using an undirected model? 

 

Answer:  

NO.  

Because the independency of x and y given z cannot be represented in undirected 

graphical model.

x 

y z 



 

Question 9 – Clustering [8 Points] 
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Single Link : {0,4,5} {20,25,39,43,44} 

Complete Link : {0,4,5} {20,25,39,43,44} 

Avg Link : {0,4,5} {20,25,39,43,44} or {0,4,5,20,25}{39,43,44} – as both 

clusterings at the final step correspond to the distance of 117/6 between clusters. 

This shows that even if single link and complete link produce the same cluster, avg 

link might behave differently for clustering. 

 

 

 

 ���� We would like to clusters the numbers from 1 to 1024 using hierarchical clustering. 

We will use Euclidian distance as our distance measure. We break ties by combining 

the two clusters in which the lowest number resides. For example, if the distance 

between clusters A and B is the same as the distance between clusters C and D we 

would chose A and B as the next two clusters to combine if min{A,B} < min{C,D} 

where {A,B} are the set of numbers assigned to A and B.  

We would like to compare the results of the three linkage methods discussed in class for 

this dataset. For each of the three methods, specify the number of elements ( numbers) 

assigned to each of the two clusters defined by the root (that is, what are the sizes of the 

two clusters if we cut the hierarchical clustering tree at the root or in other words what 

are the sizes of the last two clusters that we combine). 

 

Single link: 1023 + 1 , clustering ( ( (1,2), 3), 4 …. 

 

Complete link: 512 + 512  (  ( (1,2), (3,4) ) … 

 

Average link:  512 + 512 (  ( (1,2), (3,4) ) … 

 

 

 

 

 



 

 

 

(3). Hierarchical clustering may be bottom up or top down. Can a top down algorithm be 

exactly analogous to a bottom up algorithm ? Consider the following top down algorithm  

1. Calculate the pairwise distance d(Pi, Pj) between every two object Pi and Pj in the 

set of objects to be clustered and build a complete graph on the set of objects with 

edge weights = corresponding distances 

2. Generate the Minimum Spanning Tree of the graph I.e. Choose the subset of 

edges E' with minimum sum of weights such that G’ = (P,E') is a single connected 

tree. 

3. Throw out the edge with the heaviest weight to generate two disconnected trees 

corresponding to two top level clusters. 

4. Repeat this step recursively on the lower level clusters to generate a top down 

clustering on the set of n objects 

Does this top down algorithm perform analogously to any bottom up algorithm that you 

have encountered in class ? Why ? 

 



The clustering corresponds to single-link bottom-up clustering. The edges used to 

calculate the cluster distances for the single link bottom up clustering correspond to the 

edges of the MST (since all points must be clustered, and the cluster distance is single 

link and chooses the min wt edge joining together two so far unconnected clusters). Thus, 

the heaviest edge in the tree corresponds to the top most cluster, and so on. See example 

above. 



Question 10 – Dimensionality Reduction 

 

You have the following data: ���� � � �� ���� ��	�
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You want to reduce the data into a single dimension representation. You are given the 

first principal component (0.694, 0.720).  

 

(1). What is the representation (projected coordinate) for data #1 (x=5.51, y=5.35) in the 

first principal space?   

 

Answer: (-5.74 or -5.75) 

 

 

(2). What are the xy coordinates in the original space reconstructed using this first 

principal representation for data #1 (x=5.51, y=5.35)?  

 

Answer: (5.31, 5.55) 

 

 

 

(3). What is the representation (projected coordinate) for data #1 (x=5.51, y=5.35) in the 

second principal space?  

 

Answer: 0.28 

(±0.28, ±0.25 are accepted.) 

 

(4). What is the reconstruction error if you use two principal components to represent 

original data? 

 

Answer: 0 


