
10-601: Machine Learning
Midterm Exam

November 3, 2010

Solutions

Instructions:

• Make sure that your exam has 16 pages (not including this cover sheet) and is not missing
any sheets, then write your full name and Andrew ID on this page (and all the others if
you want to be safe).

• Write your answers in the space provided below the problem. If you make a mess, clearly
indicate your final answer.

• The exam has 8 questions, with a maximum score of 98 points. The problems are of varying
difficulty. The point value of each problem is indicated.

• This exam is open book and open notes. You may use a calculator, but any other type of
electronic or communications device is not allowed.

Question Points Score

Short Questions 16

Näıve Bayes 12

Linear Regression 10

Learning Theory 13

Decision Trees 10

Neural Networks 12

Support Vector Machines 13

Clustering 12

Total: 98
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Question 1: Short Questions (16 points)

(a) Which of the following are true? Prove or give a counter example (in terms of probability
and conditional probability tables).

i. (2 points) If A and B are conditionally independent given C, are A and B indepen-
dent?

Solution: False. For example, A = B = C.

ii. (2 points) If A and {B,C} are conditionally independent given D (e.g p(A,B,C|D) =
p(A|D)p(B,C|D)), are A and B conditionally independent given D? Hint: you can
use the fact P (X) =

∑
Y P (X,Y ).

Solution: True.

P (A,B|D) =
∑
C

P (A|D)P (B,C|D)

= P (A|D)P (B|D)

(b) (2 points) Which of the following statements are true for k-NN classifiers (circle all answers
that are correct).

1. The classification accuracy is better with larger values of k.
2. The decision boundary is smoother with smaller values of k.
3. k-NN is a type of instance-based learning.
4. k-NN does not require an explicit training step.
5. The decision boundary is linear.

Solution: 3 and 4

(c) (3 points) Is it possible for a 2-class 1-NN classifier to always classify all new examples
as positive even though there are negative examples in the training data? If yes, show an
example. If no, briefly explain.

Solution: No. Pick a negative example and its closest positive example. Any example
on the line connecting them but closer to the negative example must be classified as
negative.

(d) (2 points) Consider AdaBoost with decision stumps (decision tree of depth 1) as the weak
classifier, Figure 1 illustrates the decision threshold (horizontal line in the middle) at
iteration 1, where the points below the line are predicted to have class label +1 and those
above -1. Note that the ensemble decision boundary coincides with the decision threshold
at iteration 1. Assuming the true class label for the squares is +1 and that for the circles
is -1. Where would you predict the decision threshold and the ensemble decision boundary
would lie at the next iteration?

1. The new decision threshold lies below the threshold at iteration 1 and the ensemble
boundary lies further below the new threshold.
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2. The new decision threshold lies above the threshold at iteration 1 and the ensemble
boundary lies between the two stump thresholds.

3. The new decision threshold lies below the threshold at iteration 1 and the ensemble
boundary lies between the two stump thresholds.

4. Both the new decision threshold and the ensemble boundary coincide with the thresh-
old at iteration 1.

Figure 1: Threshold of decision stump at iteration 1 in AdaBoost.

Solution: 3

(e) (3 points) Imagine we would like to cluster houses around Pittsburgh without using their
exact addresses. For each house, we map properties of the house to a numeric value. For
instance, the house’s location is mapped as Oakland = 0, Shadyside = 1, Squirrel Hill
= 2, etc., the exterior material is brick = 0, aluminum = 1, wood = 2, etc., the kitchen
color is white = 0, green = 1, tan = 2, etc. We have 50 such features so each house
can be represented as a vector in R50. Which of the three clustering algorithms learned
in class (hierarchical clustering, k-means and Gaussian mixture models) would be most
appropriate for this task? Explain briefly for each algorithm.

Solution: Hierarchical clustering is most appropriate. Even though we converted our
categorical data to a numeric format, the mean of these vectors is meaningless so
we should not use k-means. Likewise, the data does not obey a Gaussian distribu-
tion so Gaussian mixture models are a poor choice. However, hierarchical clustering
with a suitable distance function can reasonably cluster this data because hierarchical
clustering can handle categorical features.

(f) (2 points) Which of the following adaptations of the Gaussian mixture models algorithms
will make it most similar to k-means? No need to explain.

1. Restrict each Σi to have all off-diagonal entries be 0
2. Restrict each Σi to take the form riI where ri is a real-valued scalar and I is the

identity matrix
3. Restrict each Σi to take the form rI where r is a single real-valued scalar shared by

all clusters and I is the identity matrix
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Solution: 3. If all of the Gaussian distributions are restricted in this manner, the
points will be most likely to belong in the cluster whose mean they are closest to.

/ 0
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Question 2: Näıve Bayes (12 points)

(a) (3 points) X = (X1, X2) is drawn from a two dimensional Gaussian distribution with a
diagonal covariance matrix.

X = (X1, X2) ∼ N (µ,Σ)

Σ =
(
a 0
0 b

)
where a and b are some real numbers.
Are X1 and X2 independent? Explain as succinctly as possible.

Solution: Yes, since the covariance between X1 and X2 is 0, p(X) can be factored
into p(X1) and p(X2).

(b) (3 points) We now assume that the two dimensional vector X = (X1, X2) is generated by
a Gaussian Mixture Model with 3 mixture components (k=3). All mixture components
use a diagonal covariance matrix similar to the one used in part a. Are X1 and X2 (the
two components of the input vector X) independent? Explain as succinctly as possible.

Solution: No, p(X) cannot be factored into p(X1) and p(X2). An acceptable argu-
ment: knowing X1 tells some information about the mixture component, which tells
how likely the value of X2 is.

(c) (6 points) We have a training set consisting of samples and their labels. All samples come
from one of two classes, 0 and 1. Samples are two dimensional vectors. The input data is
the form {X1, X2, Y } where X1 and X2 are the two values for the input vector and Y is
the label for this sample.
After learning the parameters of a Näıve Bayes classifier we arrived at the following table:

Table 1: Näıve Bayes conditional probabilities
Y = 0 Y = 1

X1 P (X1 = 1|Y = 0) = 1/5 P (X1 = 1|Y = 1) = 3/8
X2 P (X2 = 1|Y = 0) = 1/3 P (X2 = 1|Y = 1) = 3/4

Denote by w1 the probability of class 1 (that is w1 = P (Y = 1)). If we know that the
likelihood of the following two samples: {1,0,1},{0,1,0} given our Näıve Bayes model is
1/180, what is the value of w1? You do not need to derive an explicit value for w1. It is
enough to write a (correct . . .) equation that has w1 as the only unknown and that when
solved would provide the value of w1. Simplify as best as you can.

Solution: The likelihood of the data given the model is:

P (X1 = 1|Y = 1)∗P (X2 = 0|Y = 1) ∗ P (Y = 1)∗
P (X1 = 0|Y = 0) ∗ P (X2 = 1|Y = 0) ∗ P (Y = 0)
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Using the values in the table, set P (Y = 1) to w1 and P (Y = 0) to (1 − w1) which
leads to:

3/8 ∗ 1/4 ∗ w1 ∗ 4/5 ∗ 1/3 ∗ (1− w1) = 1/180
1/40 ∗ w1 ∗ (1− w1) = 1/180

9w2
1 − 9w1 + 2 = 0

(d) (1 bonus point) Derive an explicit value for w1.

Solution: Solving the quadratic equation above leads to w1 = 1/3 or 2/3

/ 0
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Question 3: Linear Regression (10 points)

(a) (6 points) We are given a set of two dimensional inputs and their corresponding output
pair: {xi,1, xi,2, yi}. We would like to use the following regression model to predict y:

yi = w2
1xi,1 + w2

2xi,2

Derive the optimal value for w1 when using least squares as the target minimization
function (w2 may appear in your resulting equation). Note that there may be more than
one possible value for w1.

Solution: We first write the function we would like to minimize:∑
i

(
yi − w2

1xi,1 − w2
2xi,2

)2
We now take the derivative w.r.t. w1:

∂

∂w1

∑
i

(
yi − w2

1xi,1 − w2
2xi,2

)2 =
∑

i

2w1xi,1

(
yi − w2

1xi,1 − w2
2xi,2

)
We now equate to 0 to find the minimum and get:∑

i

2w1xi,1

(
yi − w2

1xi,1 − w2
2xi,2

)
= 0

One possible answer is that w1 = 0. To find the other one we divide by 2w1 which
leads to: ∑

i

xi,1

(
yi − w2

1xi,1 − w2
2xi,2

)
= 0∑

i

xi,1yi − w2
1x

2
i,1 − w2

2xi,1xi,2 = 0∑
i

w2
1x

2
i,1 =

∑
i

xi,1yi − w2
2xi,1xi,2

w2
1 =

∑
i xi,1yi − w2

2xi,1xi,2∑
i x

2
i,1

And so w1 is either 0 or if the sum on the right is ≥ 0 we can set:

w1 =

√∑
i xi,1yi − w2

2xi,1xi,2∑
i x

2
i,1

(b) (2 points) Now assume we only observe a single input for each output (that is, a set of
{x, y} pairs). We would like to compare the following two models on our input dataset
(for each one we split into training and testing set to evaluate the learned model). Assume
we have an unlimited amount of data:

A: y = w2x

B: y = wx

/ 8
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Which of the following is correct (chose the answer that best describes the outcome):

1. There are datasets for which A would perform better than B
2. There are datasets for which B would perform better than A
3. Both 1 and 2 are correct.
4. They would perform equally well on all datasets.

Solution: 2. Model A can only account for positive relationships but cannot account
for models in which the w parameters should be negative (for example, y = −5x).
Model B can account for both positive and negative settings.

(c) (2 points) For the data above we are now comparing the following two models:

A: y = w2
1x+ w2x

B: y = wx

Note that model A now uses two parameters (though both multiply the same input value,
x). Again we assume unlimited data. Which of the following is correct (chose the answer
that best describes the outcome):

1. There are datasets for which A would perform better than B
2. There are datasets for which B would perform better than A
3. Both 1 and 2 are correct.
4. They would perform equally well on all datasets.

Solution: 4. Since we have unlimited data, the parameters learned for model B would
be equal to the some of the parameters learned for model A : w = w2

1 + w2.

/ 2
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Question 4: Learning Theory (13 points)

(a) (2 points) Which of the following procedures is sufficient and necessary and most efficient
for proving that the VC dimension of a learner is N?

1. Show that the classifier can shatter all possible dichotomies with N points.
2. Show that the classifier can shatter a subset of all possible dichotomies with N points.
3. Show that the classifier can shatter all possible dichotomies with N points and that it

cannot shatter any of the dichotomies with N+1 points.
4. Show that the classifier can shatter all possible dichotomies with N points and that it

cannot shatter one of the dichotomies with N+1 points.
5. Show that the classifier can shatter a subset of all possible dichotomies with N points

and that it cannot shatter one of the dichotomies with N+1 points.

Solution: 4

(b) (4 points) Figure 2 illustrates exclusive-OR with two inputs (x1 and x2), where the squares
are labeled as class 1 and the circles are labeled as class 0. As the figure illustrates and
as we have discussed in the class and problem set, the VC dimension of a linear classifier
in 2D is 3. Assuming that we would like to correctly shatter any set of 4 points with
linear decision boundaries, what would you do with the input points to allow successful
classification?

Solution: Introduce a new dimension such as |x1 − x2| or (x1 − x2)2]

(c) (3 points) What is the VC dimension of the resulting classifier?

Solution: 4

Figure 2: Visualization of XOR points in the input plane x1-x2.
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(d) (4 points) Consider the following fixed balanced binary decision tree of depth 2 (Figure
3) with features f1 and f2 each of which takes the value 0 or 1.

Figure 3: Balanced binary decision tree of depth 2.

Which of the following correctly depicts the size of the space of distinct hypotheses that
this tree can represent?

1. 4
2. 7
3. 12
4. 14
5. 16
6. 18

Solution: 5

/ 4
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Question 5: Decision Trees (10 points)

(a) Our goal is to construct a decision tree classifier for predicting flight delays. We have
collected data for a few months and a summary of the data is provided in Table 2.

Table 2: Decision tree data
Feature Value = yes Value = no
Rain Delayed - 30, not Delayed - 10 Delayed - 10, not Delayed - 30
Wind Delayed - 25, not Delayed - 15 Delayed - 15, not Delayed - 25
Summer Delayed - 5, not Delayed - 35 Delayed - 35, not Delayed - 5
Winter Delayed - 20, not Delayed - 10 Delayed - 20, not Delayed - 30
Day Delayed - 20, not Delayed - 20 Delayed - 20, not Delayed - 20
Night Delayed - 15, not Delayed - 10 Delayed - 25, not Delayed - 30

i. (4 points) Based on the table, which feature should be at the root of the decision tree
(briefly explain, no need to provide exact values for information gain)?

Solution: The root would be Summer. It is easy to see that using Summer
would lead to the fewest mistakes (10 overall) and so would lead to the highest
information gain.

ii. (4 points) Based on the table, which feature should be on the second level (the level
just beneath the root) of the decision tree (briefly explain, no need to provide exact
values for information gain)?

Solution: It is impossible to tell. To determine the second level feature we need
to know the breakdown of delays for the other features given the value of Sum-
mer. Since we only have summaries in this table it is not enough information for
determining the feature that would lead to the highest information gain AFTER
we used Summer.

(b) (2 points) Which of the following statements are true for BOTH decision trees and Näıve
Bayes classifiers (you may chose more than one statement):

1. In both classifiers a pair of features are assumed to be independent
2. In both classifiers a pair of features are assumed to be dependent
3. In both classifiers a pair of features are assumed to be independent given the class

label
4. In both classifiers a pair of features are assumed to be dependent given the class label

Solution: 2. In both classifiers features are not assumed to be independent. In Näıve
Bayes they are assumed to be independent only when given the class label. For decision
trees they are not assumed to be independent even if the class label is provided.

/ 10
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Question 6: Neural Networks (12 points)
Can a neural network be used to model the following machine learning algorithms? If so,
state the neural network structure (how many hidden layers are required) and the activation
function(s) used at the internal and output nodes. If not, describe why not in one or two
sentences.

(a) (3 points) k-nearest neighbors

Solution: No. kNN is an instance-based learning algorithm and does not have any
parameters to train.

(b) (3 points) Linear regression

Solution: Yes. There are no hidden layers and the activation function at the output
layer is the identity function.

(c) (3 points) Logistic regression

Solution: Yes. There are no hidden layers and the activation function at the output
layer is the sigmoid function.

(d) (3 points) L1-regularized logistic regression

Solution: No. While the neural network backpropagation algorithm could be ex-
tended to include a regularization term, standard backpropagation is unable to include
a function of the weights in the objective.

/ 12
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Question 7: Support Vector Machines (13 points)

(a) For each of the following cases, state whether it would be best to use the primal or dual
SVM formulation.

i. (2 points) We apply a feature transformation that maps the input data into a feature
space with infinite dimension.

Solution: Dual. The primal would have an infinite number of components in the
weight vector w and be unsolvable.

ii. (2 points) We apply a feature transformation that doubles the dimension of the input
data. The input data has billions of training examples and is linearly separable.

Solution: Primal. The dual formulation would have billions of α variables, and
if the data is linearly separable we do not need an ε parameter for each data point
in the primal.

(b) (3 points) In the linearly separable case, how can we use the solution of the primal for-
mulation to determine which points are the support vectors?

Solution: The primal solution gives us w and b. For each xi, we can compute
yi

(
wTxi + b

)
. xi is a support vector if and only if this quantity is 1.

(c) (6 points) Recall that the primal form of the SVM is

min
1
2
wTw + C

n∑
i=1

εi

subject to yi

(
wTxi + b

)
≥ 1− εi, ∀i

εi ≥ 0, ∀i

In the following figures, C = 0.1, 1, 10, or 100. The SVM decision boundary has been
drawn and all support vectors are circled. Below each figure, write the value of C.
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Figure 4: C = 10

Figure 5: C = 0.1

/ 0
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Figure 6: C = 100

Figure 7: C = 1

/ 0
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Question 8: Clustering (12 points)

(a) (6 points) We would like to cluster the points in Figures 8 and 9 (which are the same)
using k-means and GMM, respectively. In both cases we set k = 2. We perform several
random restarts for each algorithm and chose the best one as discussed in class. For each
method show the resulting cluster centers in the appropriate figure (k-means on Figure 8
and GMM on Figure 9).

Figure 8: k-means

Figure 9: GMM
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(b) (6 points) For the same figure (which is repeated in Figures 10 and 11) we would like to
use hierarchical clustering. We will use the Euclidian distance as the distance function. In
both cases we cut the tree at the second level to obtain two clusters. For two of the linkage
models learned in class, single and average link, circle the resulting groups of points on
each of the figures (Figure 10 - single link, Figure 11 - average link).

Figure 10: Single link

Figure 11: Average link
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