ANDREW ID (CAPITALS):

NAME (CAPITALS):

10-701/15-781 Final, Fall 2003

You have 3 hours.

There are 10 questions. If you get stuck on one question, move on to others and come
back to the difficult question later.

The maximum possible total score is 100.

Unless otherwise stated there is no need to show your working.

Good luck!



1 Short Questions (16 points)

(a) Traditionally, when we have a real-valued input attribute during decision-tree learning
we consider a binary split according to whether the attribute is above or below some
threshold. Pat suggests that instead we should just have a multiway split with one
branch for each of the distinct values of the attribute. From the list below choose the
single biggest problem with Pat’s suggestion:

(i) Tt is too computationally expensive.

(ii) It would probably result in a decision tree that scores badly on the training set
and a testset.

(110 It would probably result in a decision tree that scores well on the training set but
badly on a testset.

(iv) It would probably result in a decision tree that scores well on a testset but badly
on a training set.

(b) You have a dataset with three categorical input attributes A, B and C. There is one
categorical output attribute Y. You are trying to learn a Naive Bayes Classifier for
predicting Y. Which of these Bayes Net diagrams represents the naive bayes classifier
assumption?

(i) (ii)

@ ®

PEOE

(c) For a neural network, which one of these structural assumptions is the one that most
affects the trade-off between underfitting (i.e. a high bias model) and overfitting (i.e.
a high variance model):

The number of hidden nodes
(ii) The learning rate
(iii) The initial choice of weights

(iv) The use of a constant-term unit input



(d) For polynomial regression, which one of these structural assumptions is the one that
most affects the trade-off between underfitting and overfitting:
(3| The polynomial degree
(ii)) Whether we learn the weights by matrix inversion or gradient descent
(ili) The assumed variance of the Gaussian noise
(iv) The use of a constant-term unit input

(e) For a Gaussian Bayes classifier, which one of these structural assumptions is the one
that most affects the trade-off between underfitting and overfitting:

(i) Whether we learn the class centers by Maximum Likelihood or Gradient Descent

(] Whether we assume full class covariance matrices or diagonal class covariance
matrices

(iii) Whether we have equal class priors or priors estimated from the data.

(iv) Whether we allow classes to have different mean vectors or we force them to share
the same mean vector

(f) For Kernel Regression, which one of these structural assumptions is the one that most
affects the trade-off between underfitting and overfitting:

(i) Whether kernel function is Gaussian versus triangular versus box-shaped

(ii)) Whether we use Euclidian versus L; versus L., metrics
) The kernel width

(iv) The maximum height of the kernel function

(g) (True or fPIEH) Given two classifiers A and B, if A has a lower VC-dimension than
B then A almost certainly will perform better on a testset.

(h) P(Good Movie | Includes Tom Cruise) = 0.01
P(Good Movie | Tom Cruise absent) = 0.1
P(Tom Cruise in a randomly chosen movie) = 0.01

What is P(Tom Cruise is in the movie | Not a Good Mowvie)?

T ~Tom Cruise is in the movie
G ~Good Movie
P(T,”G)

P("G)
_ PCG|T)P(T)
- PCG|T)P(T)+ P(CGI"T)P("T)

0.01 x (1 —0.01)

T0.01 x (1—0.01)+ (1—0.1) x (1—0.01)
=1/91 ~ 0.01099

P(TI"G) =




2 Markov Decision Processes (13 points)

For this question it might be helpful to recall the following geometric identities, which assume
0<a<l.

) 1—« > 1
DRI SV
i=0 1-a i=0 l-a
The following figure shows an MDP with N states. All states have two actions (North
and Right) except S,,, which can only self-loop. Unlike most MDPs; all state transitions are
deterministic. Assume discount factor ~.

For questions (a)—(e), express your answer as a finite expression (no summation
signs or ...’s) in terms of n and/or 7.

(a) What is J*(5,)?

TH(Sn) = 10+ - J*(S,) => J*(S,) = ——

(b) There is a unique optimal policy. What is it?

(c) What is J*(S1)7

149y

JH(S) =14y 47" 2+ T(S,) " -

(d) Suppose you try to solve this MDP using value iteration. What is J'(S1)?

JYS)) =1



(e) Suppose you try to solve this MDP using value iteration. What is J2(S;)?

J2(Sl) =1 + v

(f) Suppose your computer has exact arithmetic (no rounding errors). How many itera-
tions of value iteration will be needed before all states record their exact (correct to
infinite decimal places) J* value? Pick one:

(i) Less than 2n
(i) Between 2n and n?

(iii) Between n? 4+ 1 and 2"
It will never happen

It's a limiting process.

(g) Suppose you run policy iteration. During one step of policy iteration you compute the
value of the current policy by computing the exact solution to the appropriate system
of n equations in n unknowns. Suppose too that when choosing the action during the
policy improvement step, ties are broken by choosing North.

Suppose policy iteration begins with all states choosing North.

How many steps of policy iteration will be needed before all states record their exact
(correct to infinite decimal places) J* value? Pick one:

Less than 2n

(i) Between 2n and n?
(iii) Between n? + 1 and 2"

(iv) It will never happen

After i policy iterations, we have

. _ [ Right ifn—i<j<n
Action(S;) = { North otherwise.



3 Reinforcement Learning (10 points)

This question uses the same MDP as the previous question, repeated here for your conve-

nience. Again, assume vy = %

Suppose we are discovering the optimal policy via Q-learning. We begin with a Q-table
initialized with 0’s everywhere:

Q(S;, North) = 0 for all 4
Q(S;, Right) = 0 for all 4

Because the MDP is determistic, we run Q-learning with a learning rate o« = 1. Assume we
start Q-learning at state 5.

(a) Suppose our exploration policy is to always choose a random action. How many steps
do we expect to take before we first enter state S,,7

(i) O(n) steps

(ii) O(n?) steps
(iii) O(n?) steps
8 O(2") steps

(v) It will certainly never happen

You are expected to visit S; twice before entering S; ;.

(b) Suppose our exploration is greedy and we break ties by going North:

Choose North if Q(S;, North) > Q(S;, Right)
Choose Right if Q(S;, North) < Q(S;, Right)

How many steps do we expect to take before we first enter state S,,7

(i) O(n) steps

(i) O(n?) steps
(iii) O(n3) steps
(iv) O(2") steps

Q0F It will certainly never happen

The exploration sequence is 515157 ...



(c)

Suppose our exploration is greedy and we break ties by going Right:

Choose North if Q(S;, North) > Q(S;, Right)
Choose Right if Q(S;, North) < Q(S;, Right)

How many steps do we expect to take before we first enter state 5,7

O(n) steps
(i) O(n?) steps
iii) O(n®) steps
iv) O(2") steps

It will certainly never happen

(

(iv

)
)
)
(v)

The exploration sequence is 515553 ...5,-15,.

WARNING: Question (d) is only worth 1 point so you should probably just

guess the answer unless you have plenty of time.

In this question we work with a similar MDP except that each state other than S,, has
a punishment (-1) instead of a reward (+1). S,, remains the same large reward (10).

The new MDP is shown below:

Suppose our exploration is greedy and we break ties by going North:

Choose North if Q(S;, North) > Q(S;, Right)
Choose Right if Q(S;, North) < Q(S;, Right)

How many steps do we expect to take before we first enter state S,,?

(i) O(n) steps

(i) O(n?) steps
(iii) O(n?) steps
(iv) O(2") steps
(v) It will certainly never happen

(i) or (iii).

Each time a new state .S; is visited, we have to go North and jump back to S;. So the
sequence should be longer than 515.951.5. .. Si., i.€. it takes at least O(n?) steps.

The jump from S; to S} happens more than once because (.S, Right) keeps increasing.
But the sequence should be shorter than {S}{S5151.2}{S151251:3} ... {S1512- - S1:n},

i.e. it takes at most O(n?) steps.



4 Bayesian Networks (11 points)

Construction. Two astronomers in two different parts of the world, make measurements
My and M of the number of stars N in some small regions of the sky, using their telescopes.
Normally, there is a small possibility of error by up to one star in each direction. Each
telescope can be, with a much smaller probability, badly out of focus (events F; and Fy). In
such a case the scientist will undercount by three or more stars or, if N is less than three,
fail to detect any stars at all.

For questions (a) and (b), consider the four networks shown below.

M ()—(u) (i)
QR P

& @ ®

(i) @ @ (iv) @ @
(V) () ()
®) (%) @)

(a) Which of them correctly, but not necessarily efficiently, represents the above informa-
tion? Note that there may be multiple answers.

(i) and (iii).
(ii) can be constructed directly from the physical model. (iii) is equivalent to (ii) with a

different ordering of variables. (i) is incorrect because F; and N cannot be conditionally
independent given M;. (iv) is incorrect because M; and M, cannot be independent.

(b) Which is the best network?

(ii). Intuitive and easy to interpret. Less links thus less CPT entries. Easier to assign the
values of CPT entries.



Inference. A student of the Machine Learning class notices that people driving SUVs
(S) consume large amounts of gas (G) and are involved in more accidents than the national
average (A). He also noticed that there are two types of people that drive SUVs: people
from Pennsylvania (L) and people with large families (F). After collecting some statistics,
he arrives at the following Bayesian network.

P(SIL,F)=0.8
P(S|"L,F) = 0.5
P(S|L,"F)=0.6
P(S|"L,"F)=0.3

P(G1S)=0.8

P(A[S)=0.7
P(A178)=0.3 @ P(G|"8)=0.2

(¢c) What is P(S)?

P(S)= P(S|L,F)P(L)P(F)+ P(S|"L,F)P("L)P(F)+
P(S|L,"F)P(L)P("F)+ P(S|"L,"F)P("L)P("F)
=04-06-08+06-06-05+04-04-06+06-04-0.3
=0.54

(d) What is P(S|A)?

P(S, A) B 0.54 - 0.7
(A|S)P(S)+ P(AI"S)P("S)  0.54-0.7+0.46-0.3

P(S]4) = 3 =0.733

Consider the following Bayesian network. State whether the given conditional independences
are implied by the net structure.

(f) (NS or False) 1<A,{},B>
(g) (True or [FEH) I<A,{E},D>
(h) (True or [PAES) I<A,{F},D>



5 Instance Based Learning (8 points)

Consider the following dataset with one real-valued input x and one
binary output y. We are going to use k-NN with unweighted Eu-
clidean distance to predict y for x.

- + + -+ + - - + +
-0.1 0.7 1.0 1.6 20 25 32 35 4.1 4.9

(a) What is the leave-one-out cross-validation error of 1-NN on this dataset? Give your

answer as the number of misclassifications.
4

(b) What is the leave-one-out cross-validation error of 3-NN on this dataset? Give your

answer as the number of misclassifications.
8

Consider a dataset with N examples: {(x;,y;)|1 < i < N}, where both z; and y; are real
valued for all i. Examples are generated by y; = wy + wix; + e; where e; is a Gaussian

random variable with mean 0 and standard deviation 1.

(c) We use least square linear regression to solve wy and wy, that is

{wg, wi} = arg min Z, (i — wo — wyz)?.
{wo,w1}

We assume the solution is unique. Which one of the following statements is true?

(i) YL l(yz-— —wiz;)y; =0
<u> i (i — wi — wiz;)z} =0
ZL(% — wiz;)z; =0
(N) > im (i — wg — wiw)? =0

X

-0.1

0.7

1.0

1.6

2.0

2.5

3.2

e e N R e 1

3.5

4.1

+

4.9

+

(d) We change the optimization criterion to include local weights, that is

{w§, wi} = arg min S ol (Y — wo — wyzy)?

where «; is a local weight. Which one of the following statements is true?

(i) YL, oy — wo wiz;) (7 + ;) =0
(i) >, iy — wf — wizi)w; =0

(i) S, a2y — wi — wiz) (wiy: +w1) 0

W) S5 a2y — wi — wiw)a; =

10



6 VC-dimension (9 points)
Let H denote a hypothesis class, and VC(H) denote its VC dimension.

(a) (True or ) If there exists a set of k instances that cannot be shattered by H,
then VC(H) < k.

(b) ( or False) If two hypothesis classes Hy and Hj satisfy Hy C Ho, then
VC(Hy) < VC(H,).

(¢) (True or ) If three hypothesis classes Hy, Hy and Hj satisfy H; = Hy U Hj |

A counter example:

Hy ={h},h=0and H3 = {W}, = 1. Apparently VC(H,) = VC(H3) = 0.
Hy = HyUH; = {h,I}.

So VC(H,) =1>VC(Hy) +VC(H;) = 0.

For questions (d)—(f), give VC(H). No explanation is required.
(d) H=1{ho|0 <a <1 hy(x)=1iff z > a otherwise h,(x) = 0}.

1

(e) H is the set of all perceptrons in 2D plane, i.e.
H = {hw|hw = 0(wy + wir1 + woxs) where §(z) = 1 iff 2 > 0 otherwise 6, = 0}.

3

(f) H is the set of all circles in 2D plane. Points inside the circles are classified as 1
otherwise 0.

3

11



7

SVM and Kernel Methods (8 points)

(a) Kernel functions implicitly define some mapping function ¢(-) that transforms an input

instance x € R? to a high dimensional feature space @ by giving the form of dot product
in Q: K(xi,%x;) = ¢(x;) - ¢(x;).

Assume we use radial basis kernel function K(x;,x;) = exp(—3||x; — x;{|?). Thus we
assume that there’s some implicit unknown function ¢(x) such that

80x0) - 6057) = K (x137) = expl—5 s = %,

Prove that for any two input instances x; and x;, the squared Euclidean distance
of their corresponding points in the feature space @) is less than 2, i.e. prove that

[o(xi) — o(x;)[1? < 2.

l6(x0) ~ o)
=(606) — 6053)) - (9x0) — 905,)
=0(x:) - p(x:) + O(x5) - d(x;) — 2 D(x3) - D(x;)
=2~ 2exp(—3 1 — )

<2

With the help of a kernel function, SVM attempts to construct a hyper-plane in the
feature space () that maximizes the margin between two classes. The classification
decision of any x is made on the basis of the sign of

W ¢ + wO Z yzaz Xz; + wO f(X; «, ’LZ)()),
€SV

where w and w, are parameters for the classification hyper-plane in the feature space
@, SV is the set of support vectors, and «; is the coefficient for the support vector.

Again we use the radial basis kernel function. Assume that the training instances are
linearly separable in the feature space (), and assume that the SVM finds a margin
that perfectly separates the points.

(EMSIT or False) If we choose a test point X s, which is far away from any training
instance x; (distance here is measured in the original space RY), we will observe that

f(xfar; «, 1,21()) ~ 'LZJO-

||Xfar — Xz” > O, Vie SV
=K (Xfar,%;) = 0, Vi € SV

— ZZESV yiaiK(Xfara Xz) ~ O
= [ (Xyar; @, W) = Wo

12



(c)

( or False) The SVM learning algorithm is guaranteed to find the globally
optimal hypothesis with respect to its object function.

See Burges' tutorial.

(True or [2HY) The VC dimension of a Perceptron is smaller than the VC dimension
of a simple linear SVM.

Both Perceptron and linear SVM are linear discriminators (i.e. a line in 2D space or a plane
in 3D space . ..), so they should have the same VC dimension.

(ENS or False) After being mapped into feature space @ through a radial basis
kernel function, a Perceptron may be able to achieve better classification performance
than in its original space (though we can’t guarantee this).

Sometimes it isn't sufficient for a given learning algorithm to work in the input space because
the assumption behind the algorithm doesn't match the real pattern of the data. For
example, SVM and Perceptron require the data are linearly separable. When the assumption
isn't held, we may apply some kind of transformation to the data, mapping them to a new
space where the learning algorithm can be used. Kernel function provides us a means to
define the transformation. You may have read some papers that report improvements on
classification performance using kernel function. However, the improvements are usually
obtained from careful selection and tuning of parameters. Namely, we can’t guarantee the
improvements are always available.

(True or [RES) After mapped into feature space @ through a radial basis kernel
function, 1-NN using unweighted Euclidean distance may be able to achieve better
classification performance than in original space (though we can’t guarantee this).

Suppose x; and x; are two neighbors for the test instance x such that ||x —x;|| < [|[x—x;|].
After mapped to feature space, [[¢(x) — ¢(x;)[|? = 2 — 2exp(—3x — x[|?) < 2 —
2exp(—3lx — x;[1*) = ||¢(x) — ¢(x;)|[>. So, if x; is the nearest neighbor of x in the
original space, it will also be the nearest neighbor in the feature space. Therefore, 1-NN
doesn't work better in the feature space. Please note that A£-NN using non-Euclidean
distance or weighted voting may work.

13



8

GMM (8 points)

Consider the classification problem illustrated in the following figure. The data points in the

(19l

figure are labeled, where “0” corresponds to class 0 and “+” corresponds to class 1. We now
estimate a GMM consisting of 2 Gaussians, one Gaussian per class, with the constraint that
the covariance matrices are identity matrices. The mixing proportions (class frequencies)
and the means of the two Gaussians are free parameters.

(a)

2 | | |
s | |
i | |
Lo+ ! !
1 ¢ | |
i o i
0 H
! !
| |
<' 1 )il e
| |
| |
| |
| | |
0.5 — i s
|+ | |
| &, e
! ! !
0 | I © © I
0 0.5 1 1.5 2
Xl

Plot the maximum likelihood estimates of the means of the two Gaussians in the figure.

(A

Mark the means as points “x” and label them “0” and “1” according to the class.
The means of the two Gaussians should be close to the center of mass of the points.

Based on the learned GMM, what is the probability of generating a new data point
that belongs to class 07

0.5

How many data points are classified incorrectly?
3

Draw the decision boundary in the same figure.

Since the two classes have the same number of points and identical covariance matrices,
the decision boundary should be a straight line, which is also the orthogonal bisector of the
line segment connecting the class means.

14



9 K-means Clustering (9 points)

There is a set S consisting of 6 points in the plane shown as below, a = (0,0), b = (8,0),
¢ = (16,0), d = (0,6), e = (8,6), f = (16,6). Now we run the k-means algorithm on those
points with & = 3. The algorithm uses the Euclidean distance metric (i.e. the straight line
distance between two points) to assign each point to its nearest centroid. Ties are broken in

favor of the centroid to the left/down. Two definitions:

e A k-starting configuration is a subset of k starting points from S that form the

initial centroids, e.g. {a,b,c}.

e A k-partition is a partition of S into k non-empty subsets, e.g. {a,b, e}, {c,d},{f} is

a 3-partition.

Clearly any k-partition induces a set of k centroids in the natural manner. A k-partition
is called stable if a repetition of the k-means iteration with the induced centroids leaves it

unchanged.
8
6ed ec of
> 4
2
a b c
0 T . T . 1
0 4 8 12 16 20

(a) How many 3-starting configurations are there? (Remember, a 3-starting configuration

is just a subset, of size 3, of the six datapoints).

C3 =20

(b) Fill in the following table:

3-partition

Stable?

An example 3-starting configuration that
can arrive at the 3-partition after 0
or more iterations of k-means (or write

“none” if no such 3-starting configuration

# of unique
3-starting
configurations

that arrive at

{a,b,d},{c} {e, [}

{a, c, f}

exists) the 3-partition
{a,b,e},{c,d},{f} | N none 0
{a,b}, {d, e}, {c, f} | Y {b, c, e} 4
{a,d} {b,e} {c. [} | Y {a, b, c} 8
{a} {d} {b,c.e, f} | Y {a, b, d} 2
{a,b},{d},{c,e, f} | Y none 0
Y 1

15




10

Hidden Markov Models (8 points)

Consider a hidden Markov model illustrated as the figure shown below, which shows the
hidden state transitions and the associated probabilities along with the initial state distribu-
tion. We assume that the state dependent outputs (coin flips) are governed by the following
distributions

P(z = heads|s = 1) = 0.51

P(z = heads|s = 2) = 0.49

P(z = tails|s = 1) = 0.49

P(x = tails|s = 2) = 0.51

In other words, our coin is slightly biased towards heads in state 1 whereas in state 2 tails
is a somewhat more probable outcome.

N6 i €Y iy ©ORE

0.

/\ /\

0997 (01 S 01 S
@0.9 @0.9 @

(a)

t=0 t=1 t=2

Now, suppose we observe three coin flips all resulting in heads. The sequence of
observations is therefore heads; heads; heads. What is the most likely state sequence
given these three observations? (It is not necessary to use the Viterbi algorithm to
deduce this, nor any subsequent questions).

2,22

The probabilities of outputting head are nearly identical in two states and it is very likely
that the system starts from state 2 and stay there. It loses a factor of 9 in probability if it
ever switchs to state 1.

What happens to the most likely state sequence if we observe a long sequence of all
heads (e.g., 10° heads in a row)?

2,1,11,...

When the number of continuous observations of heads increases, the pressure for the system
to switch to state 1 also increases, as state 1 has a slight advantage per observation.
Eventually the switch will take place and then there's no benefit from ever switching back
to state 2. The cost of the transition switching from state 2 to state 1 is the same regardless
of when it takes place. But switching earlier is better than later, since the likelihood of
observing the long sequence of all heads is greater. However, it is somewhat better to go
via state 2 initially and switch right after (0.99*%0.49*0.1 ...) rather than start from state
1 to begin with (0.01*0.51*0.9 ...).

16



(c) Consider the following 3-state HMM, 71, 7 and 73 are the probabilities of starting from
each state S1, 52 and S3. Give a set of values so that the resulting HMM maximizes
the likelihood of the output sequence ABA.

There are many possible solutions, and they are all correct as long as they output ABA with
probability 1, and the parameter settings of the models are sound. Here is one possible
solution:

17



(d) We're going to use EM to learn the parameters for the following HMM. Before the first
iteration of EM we have initialized the parameters as shown in the following figure.
(True or fES) For these initial values, EM will successfully converge to the model
that maximizes the likelihood of the training sequence ABA.

1/3

A B A B

Note the symmetry of the initial set of values over Si, S5 and S3. After each EM iteration,
the transition matrix will keep the same (a;; = 1/3). The observation matrix may change,

but the symmetry still holds (b;(A) = b;(A)).

() (ERSH or False) In general when are trying to learn an HMM with a small number of
states from a large number of observations, we can almost always increase the training
data likelihood by permitting more hidden states.

To model any finite length sequence, we can increase the number of hidden states in an
HMM to be the number of observations in the sequence and therefore (with appropriate
parameter choices) generate the observed sequence with probability 1. Given a fixed number
of finite sequences (say n), we would still be able to assign probability 1/n for generating
each sequence. This is not useful, of course, but highlights the fact that the complexity of
HMMs is not limited.
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