Solutions to 15-781 Midterm, Fall 2002

YOUR ANDREW USERID IN CAPITAL LETTERS:

YOUR NAME:

There are 5 questions.

Questions 1-5 are worth 20 points each.

e The maximum possible total score is 100.

Unless otherwise stated there is no need to show your working.



1

Decision Trees (20 points)

Master Yoda is concerned about the number of Jedi apprentices that have turned to the
Dark Side, so he’s decided to train a decision tree on some historical data to help identify
problem cases in the future. The following table summarizes whether or not each of 12
initiates turned to the Dark Side based on their age when their Jedi training began, whether
or not they completed their training, their general disposition, and their species.

‘ Dark Side ‘ Age Started Training ‘ Completed Training ‘ Disposition ‘ Species ‘

0 5) 1 Happy Human

0 9 1 Happy Gungan

0 6 0 Happy Wookiee

0 6 1 Sad Mon Calamari
0 7 0 Sad Human

0 8 1 Angry Human

0 5 1 Angry Ewok

1 9 0 Happy Ewok

1 8 0 Sad Human

1 8 0 Sad Human

1 6 0 Angry Wookiee

1 7 0 Angry Mon Calamari

(3 points) What is the initial entropy of Dark Side?

—Zlogas — 15108275 = 0.979868756651153

(3 points) Which attribute would the decision-tree building algorithm choose to use
for the root of the tree?

Completed Training

(3 points) What is the information gain of the attribute you chose to split on in the
previous question?

a— ($5(—2logs2 — 2logs ) 4 15(—2logs2 — 2logz2)) = 0.476381758320618

where a is the answer to part (a)
(Note that log0 is —oco, but we define 0log0 = 0.)



()

(e)

(3 points) Draw the full decision tree that would be learned for this data (with no

pruning).

Completed Training

Not Dark Side

0

Age Started Training
<7.5 7.5
Dark Side

Happy Sad

|Not Dark Side| |Not Dark Side| Dark Side

(2 points) Consider the possibility that the input data above is noisy and not completely
accurate, so that the decision tree you learned may not accurately reflect the function
you want to learn. If you were to evaluate the three initiates represented by the data

points below, on which one would you be most confident of your prediction, and why?

‘ Name ‘ Age Started Training ‘ Completed Training ‘ Disposition ‘ Species ‘
Ardath 5 0 Angry Human
Barbar 8 0 Angry Gungan
Caldar 8 0 Happy Mon Calamari

Barbar. The rule we learned is that you turn to the Dark Side if you did not
complete your training and you either were too old or angry. Barbar falls
under both clauses of the OR part, so even if one half of the rule learned is
wrong, he still goes to the Dark Side. A variety of answers were accepted
provided they had suitable justification.



(f)

(8 points) Assume we train a decision tree to predict Z from A, B, and C using the
following data (with no pruning):

(Z[AIB[C]
0]0]0]0
0001
0001
0010
0011
{011
0[1]0]0
IEE
{110
{110
0111
1111

What would be the training set error for this dataset? Express your answer as the
number of records out of 12 that would be misclassified.

2. We have four pairs of records with duplicate input variables, but only
two of these have contradictory output values. One item of each of these
two pairs will always be misclassified.

(8 points) Consider a decision tree built from an arbitrary set of data. If the output
is discrete-valued and can take on k different possible values, what is the maximum
training set error (expressed as a fraction) that any data set could possibly have?

% Consider a set of data points with identical inputs but with outputs
evenly distributed among the k possible values. The tree will label all these
points as a single class which will be wrong for the ones in the other £ — 1
classes. Increasing the relative amount of any one class will guarantee that
that class will be chosen as the label for all the points, so the error fraction

will decrease (as that class now represents more than % of the points.



2 Probability and Bayes Classifiers (20 points)

This figure illustrates a simple class of probability density functions over pairs of real-valued
variables. We call it the Rectangle PDF'.

. (xhi,yhi)
plx,y)= 1/Area
(1‘7 y) ~ ReCt(J;loa Yios Thi, yhi) ] inside this box
means " . p(x,y)
plz,y) = ETVEr. rr— if 7, <o < ap and Yo <Y < Yni T R averywhez«
= 0 otherwise ¥ ’ elee
X—=
y=2.0
y=1.5 -
(2 points) Assuming (z,y) ~ Rect(0,0,0.5,2) (as shown in
(a) the diagram to the right), compute the value of the density y=1.0 -
plr=1y=7)
y=0.5 —
y=0 T T
x=0 x=1/2 x=1 x=1

p(x=1/4,y=1/4) = 1/Area = 1/(0.5 * 2) =1

(3 points) Under the same assumptions, compute the density p(y = i)

The marginal p(y) is constant between O through 2 and zero everywhere
else. To integrate to 1 it must have height 0.5. So, since 0 <= 1/4 <= 2,

we have p(y) = 0.5

(3 points) Under the same assumptions, compute the density p(z =

(3 points) Under the same assumptions, compute the density p(z =

x and y are independent so p(x=1/4ly) = p(x=1/4) = 2
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Maximum Likelihood Estimation of Rectangles

Assume we have R datapoints (z1,y1), (€2, Y2)...(Tr, yr) Wwhere each datapoint is drawn
independently from Rect(Zio, Yio, This Yni)

Suppose we want to find the MLE parameters (%, Y10, Thi, Yni) that maximize the
likelihood of the datapoints. It turns out (no proof given or required) that these MLE
values define the bounding box of the datapoints:

oMEE = mingay
Yin Y = mingy
l‘%LE = MmMaxrily
yni “F = mazyyy

Now, suppose that we use the rectangle distribution as the density estimator for each
class of a Bayes Classifier that we're about to learn. The data is

6 —
5 .C .C
‘x‘y‘Class‘
114 A 4 — oA
311 A
212 B 3 oB
73] B B
3|2 C 2 — ° .C .C
415 C
512 C y 1+ oA
6|5 C
0 T T T T ]
0 1 2 3 4 5 6
X——=

Assuming we use the Rectangle Bayes Classifier learned from the data, what value will
the classifier give for:

(3 points) P(Class = Alx = 1.5,y = 3)

P(A|1.5,3) = p(1.5,31A) P(A)

p(1.5,34) P(A) + p(1.5,3|B) P(B) + p(1.5,3]C) P(C)

which is clearly 1, since p(1.5,3[B) = p(1.5,3IC) = 0



(f)

(2)

(3 points) P(Class = Alx = 2.5,y = 2.5)

P(A|2.5,2.5) = p(2.5,2.5/4) P(A)
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1/6 * 1/4 + 1/5 x 1/.4 1/5 + 1/6 6 +5

(3 points) P(Class = Aly =5)

0 (because P(y=5|A) = 0)



3 Cross Validation (20 points)

Suppose we are learning a classifier with binary output values Y=0 and Y=1. There is one
real-valued input X. Here is our data:

-
E

1 0

2 10 1 ° ° . ° °

3 0

4 0

6 1

7 1 y (= [} ° [} [} °

8 1

851 0 I 1 1 I I I I T T T T
9 |1 0 1 2 3 4 5 6 7 8 9 10
10 | 1 X——=

Assume we will learn a decision tree on this data. Assume that when the decision tree splits on the real
valued attribute x, it puts the split threshold halfway between the attributes that surround the split. For
example, using information gain as the splitting criterion, the decision tree would initially choose to split at
x = 5, which is halfway between the x = 4 and x = 6 datapoints.

Let Algorithm DT2 be the method of learning a decision tree with only two leaf nodes (i.e. only one
split).

Let Algorithm DT* be the method of learning a decision tree fully with no pruning.

(a) (5 points) What will be the training set error of DT2 on our data? In this part, and all future parts,
you can express your answer as the number of misclassifications out of 10.

1/10, because the decision tree will split at x = 5 and will make one
mistake at the right branch

(b) (5 points) What will be the leave-one-out-cross-validation error of DT2 on our data?

1/10, because the decision tree will split at approximately
x = b on each fold and the left-out-point will be consistent with
the prediction in all folds except for the ‘‘leave out x = 8.5%’ fold

(¢) (5 points) What will be the training set error of DT* on our data?
0/10 because there will be no inconcistencies in any leaves
(d) (5 points) What will be the leave-one-out-cross-validation error of DT* on our data?

3/10. The leave-one-out points that will be wrongly predicted
are x = 8, x = 8.5 and x = 9. For example when x=8 is left out
the decision tree that will be learned is
if x < 5 predict O
if x > 5 if x < 7.75 (halfway point between 7 and 8.5) predict 1
if x > 7.756 if x < 8.75 predict O
if x > 8.75 predict 1

which wrongly predicts 0 for the left-out point



4 Computational learning theory (20 points)

True or false: For a-d, if false, give a counter example. If true, give a 1 sentence justification.

(a) (8 points) Within the setting of the PAC model it is impossible to assure with proba-
bility 1 that the concept will be learned perfectly (i.e., with true error=0), regardless
of how many training examples are provided.

Answer: true. In this setting instances are drawn at random, and we
therefore can never be certain the training examples sufficient to learn the
concept will be seen within any finite sample of instances.

(b) (3 points) If the Halving Algorithm has made exactly |loge|H || mistakes, and H con-
tains the target concept, then it must have learned a hypothesis with true error=0,
regardless of what training sequence we presented and what hypothesis space H it
considered.

Answer: true. After each mistake the size of the version space will be
reduced to at most half its initial size. Hence, after floor(log2(I|HI))
mistakes, there can be only one hypothesis remaining in the version space.

(c) (3 points) It is impossible for the Halving Algorithm to learn any concept without it
making at least VC(H) mistakes, regardless of what training sequence we present, and
what hypothesis space H it considers.

Answer: false. As we discussed in class: for some sequences of training
examples the Halving Algorithm can converge while making zero mistakes,
because individual hypotheses will be removed from the version space even if
the majority of hypotheses votes correctly.

(d) (3 points) The PAC bounds make a worst case assumption about the probability dis-
tribution over the instances X, but it is possible to learn from fewer examples for some
distributions over X.

Answer: true. Consider the probability distribution that assigns probability
1 to a single instance in X, and probability O to all other instances. After
one training example the concept will be perfectly learned (with error=0).



Consider the class of concepts H2p defined by conjunctions s !
of two arbitrary perceptrons. More precisely, each hypoth- N

esis h(x) : X — {0,1} in H2p is of the form h(z) = pi(x) ¥
AND py(x), where p;(x) and py(x) are any two-input per- N
ceptrons. The figure illustrates one such possible classfier in N
two dimensions. I ’

(e) (4 points) Draw a set of three points in the plane that cannot be shattered by H2p.

Note each hypothesis forms a ‘‘V’’ shaped surface in the plane, where points
within the V are labeled positive. Three colinear points cannot be
shattered, because no V can capture the case that includes the two outermost
points while excluding the inner point.

(f) (4 points) What is the VC dimension of H2p? (Partial credit will be given if you can
bound it, so show your reasoning!)

The VC dimension is 5. You can shatter a set of 5 points spaced out evenly
on the circumference of a circle. Note you cannot shatter a set of 6 points
spaced evenly on the circle because you cannot capture the case where the
labels alternate +-+-+-. (note this doesn’t really prove that there exists
*nox set of 6 points that can be shattered, but full credit was given to
anybody who gave this answer).

10



Regression and neural networks (20 points)

(8 points) Derive a gradient descent training algorithm that minimizes the sum of
squared errors for a variant of a perceptron where the output o of the unit depends on
its inputs z; as follows:

0 = Wy + W Ty + W TS + WaTo + WS + ... + WyTy, + Wy

Give your answer in the form w; <— w; + ... for 1 < i < n. You do not need to give
the update rule for wy.

To answer this, calculate the gradient in a fashion analogous to that shown
on pages 91-92 of the textbook. The answer in this case is

w; = w; + N gep(ty — 0a)(Tia + 1)

11
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(b)

Consider the following plot showing training set error and validation set error for the
Backpropagation algorithm training a neural network for a particular medical diagnosis
problem. Note that the training error decreases monotonically with increasing gradient
descent steps, whereas the validation error does not. Suppose now that we were to

retrain the same neural network using exactly the same algorithm, but using ten times
as much training data.

Error versus Weight Updates (Example 1)
0.01 . . .

0.009 Training set error ©
0.008 Validation set error  +

0.007
0.006
0.005 |
0.004
0.003
0.002

Error ( | qs,zum)

Mean

0 5000 10000 15000 20000
Number of weight updates

(6 points) Would you expect the training curve to be different? If so, draw what you
would expect. In either case, explain your reasoning in at most three sentences.
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(6 points) Would you expect the validation to be different? If so
you would expect. In either case, explain your reasoning in at most three sentences.
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