
10-701 Midterm Exam, Spring 2005

1. Write your name and your email address below.

Name:

Email address:

2. There should be 15 numbered pages in this exam (including this cover sheet).

3. Write your name at the top of EVERY page in the exam.

4. You may use any and all books, papers, and notes that you brought to the exam, but not
materials brought by nearby students. No laptops, PDAs, or Internet access.

5. If you need more room to work out your answer to a question, use the back of the page and
clearly mark on the front of the page if we are to look at what’s on the back.

6. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult ones
before you have answered the easier ones.

7. Note there is one extra-credit question. The grade curve will be made without considering
students’ extra credit points. The extra credit will then be used to try to bump your grade
up without affecting anyone else’s grade.

8. You have 80 minutes.

9. Good luck!

Question Number of points Score
1. Big Picture 10
2. Short Questions 15
3. Learning Algorithms 16
4. Decision Trees 16
5. Loss Fns. and SVMs 23
6. Learning Theory 20
Total 100
Extra credit
7. Bias-Variance Trade-off 18
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1 [10 points] Big Picture

Following the example given, add 10 edges to Figure 1 relating the pair of algorithms. Each edge
should be labeled with one characteristic the methods share, and one difference. These labels
should be short and address basic concepts, such as types of learning problems, loss functions, and
hypothesis spaces.

Naïve 
Bayes

Logistic 
regression

Neural
Nets

Boosting

SVMs

Instance-based
Learning

SVM 
regression

kernel
regression

linear
regression

Decision
trees

H-space: both linear

Log-loss v. Hinge-loss

Figure 1: Big picture.
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One solution is shown below, there are many others.

Figure 2: Big picture solutions.
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2 [15 points] Short Questions

(a) [3 points] Briefly describe the difference between a maximum likelihood hypothesis and a
maximum a posteriori hypothesis.

Solutions:
ML: maximize the data likelihood given the model, i.e., arg max

W
P (Data|W )

MAP: arg max
W

P (W |Data)

(b) [4 points] Consider a naive Bayes classifier with 3 boolean input variables, X1, X2 and X3,
and one boolean output, Y .

• How many parameters must be estimated to train such a naive Bayes classifier? (you
need not list them unless you wish to, just give the total)

Solutions:
For a naive Bayes classifier, we need to estimate P(Y=1), P (X1 = 1|y = 0), P (X2 = 1|y = 0),
P (X3 = 1|y = 0), P (X1 = 1|y = 1), P (X2 = 1|y = 1), P (X3 = 1|y = 1). Other proba-
bilities can be obtained with the constraint that the probabilities sum up to 1.
So we need to estimate 7 parameters.

• How many parameters would have to be estimated to learn the above classifier if we do
not make the naive Bayes conditional independence assumption?

Solutions:
Without the conditional independence assumption, we still need to estimate P(Y=1).
For Y=1, we need to know all the enumerations of (X1,X2,X3), i.e., 23 of possible
(X1,X2,X3). Consider the constraint that the probabilities sum up to 1, we need to
estimate 23 − 1 = 7 parameters for Y=1.
Therefore the total number of parameters is 1 + 2(23 − 1) = 15.
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[8 points] True or False? If true, explain why in at most two sentences. If false, explain why
or give a brief counterexample in at most two sentences.

• (True or False?) The error of a hypothesis measured over its training set provides a
pessimistically biased estimate of the true error of the hypothesis.

Solutions:
False. The training error is optimisticly biased since it’s biased while usually smaller
than the true error.

• (True or False?) If you are given m data points, and use half for training and half
for testing, the difference between training error and test error decreases as m increases.

Solutions:
True. As we have more and more data, training error increases and testing error de-
creases. And they all converge to the true error.

• (True or False?) Overfitting is more likely when the set of training data is small

Solutions:
True. With small training dataset, it’s easier to find a hypothesis to fit the training data
exactly,i.e., overfit.

• (True or False?) Overfitting is more likely when the hypothesis space is small

Solutions:
False. We can see this from the bias-variance trade-off. When hypothesis space is small,
it’s more biased with less variance. So with a small hypothesis space, it’s less likely to
find a hypothesis to fit the data very well,i.e., overfit.
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3 [16 points] Learning Algorithms

Consider learning a target function of the form f : <2 → {A,B,C} that is, a function with 3
discrete values defined over the 2-dimensional plane. Consider the following learning algorithms:

• Decision trees

• Logistic regression

• Support Vector Machine

• 1-nearest neighbor

Note each of these algorithms can be used to learn our target function f , though doing so might
require a common extension (e.g., in the case of decision trees, we need to utilize the usual method
for handling real-valued input attributes).

For each of these algorithms,

A. Describe any assumptions you are making about the variant of the algorithm you would use

B. Draw in the decision surface that would be learned given this training data (and describing
any ambiguities in your decision surface)

C. Circle any examples that would be misclassified in a leave-one-out evaluation of this algorithm
with this data. That is, if you were to repeatedly train on n-1 of these examples, and use the
learned classifier to label the left out example, will it be misclassified?

Solutions:
the assuptions are as follows:
Decision trees: Handle real valued attributes by discretizing;
Logistic regression: Handle non-binary classification;
SVM: Use one against all approach and a linear kernel;
1-NN: x-axis features and y-axis features are non-weighted.
Please see the figures on the right for decision surface and misclassified examples by leave-one-out
evaluation.
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Logistic regression
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4 [16 points] Decision Trees

NASA wants to be able to discriminate between Martians (M) and Humans (H) based on the
following characteristics: Green ∈ {N, Y }, Legs ∈ {2, 3}, Height ∈ {S, T}, Smelly ∈ {N,Y }.
Our available training data is as follows:

Species Green Legs Height Smelly
1) M N 3 S Y
2) M Y 2 T N
3) M Y 3 T N
4) M N 2 S Y
5) M Y 3 T N

6) H N 2 T Y
7) H N 2 S N
8) H N 2 T N
9) H Y 2 S N
10) H N 2 T Y

a)[8 points] Greedily learn a decision tree using the ID3 algorithm and draw the tree.
See the following figure for the ID3 decision tree:
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b) i) [3 points] Write the learned concept for Martian as a set of conjunctive rules (e.g., if
(green=Y and legs=2 and height=T and smelly=N), then Martian; else if ... then Martian;
...; else Human).

Only the disjunction of conjunctions for Martians was required.
(Legs=3) ∨
(Legs=2 ∧ Green=Yes ∧ Height=Tall) ∨
(Legs=2 ∧ Green=No ∧ Height=Short ∧ Smelly=Yes)

ii) [5 points] The solution of part b)i) above uses up to 4 attributes in each conjunction. Find
a set of conjunctive rules using only 2 attributes per conjunction that still results in zero
error in the training set. Can this simpler hypothesis be represented by a decision tree of
depth 2? Justify.

We allowed a little variation on this one because the question could be interpreted as allowing
conjunctions with up to two terms. In fact, only two two-term conjunctions are necessary:
(Green=Yes ∧ Height=Tall) ∨ (Smelly=Yes ∧ Height=Short)
These conjunctive rules share the height term, so a depth-2 tree is possible. See the figure
below.

Notice how ID3 finds a tree that is much longer than the optimal tree. This is due to the
greediness of the ID3 algorithm.
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5 [23 points] Loss functions and support vector machines

In homework 2, you found a relationship between ridge regression and the maximum a posteriori
(MAP) approximation for Bayesian learning in a particular probabilistic model. In this question,
you will explore this relationship further, finally obtaining a relationship between SVM regression
and MAP estimation.

(a) Ridge regression usually optimizes the squared (L2) norm:

ŵL2 = arg min
w

N∑

j=1

(tj −
∑

i

wihi(xj))2 + λ
∑

i

w2
i . (1)

The L2 norm minimizes the squared residual (tj−
∑

i wihi(xj))2, thus significantly weighing outlier
points. (An outlier is a data point that falls far away from the prediction

∑
i wihi(xj).) An

alternative that is less susceptible to outliers is to minimize the “sum of absolute values” (L1)
norm:

ŵL1 = arg min
w

N∑

j=1

|tj −
∑

i

wihi(xj)|+ λ
∑

i

w2
i . (2)

(i)[2 points] Plot a sketch of the L1 loss function, do not include the regularization term in your
plot. (The x-axis should be the residual tj −

∑
i wihi(xj) and the y-axis is the loss function.)

residual

loss

Figure 3: L1 loss.

(ii)[2 points] Give an example of a case where outliers can hurt a learning algorithm.

Want GetWant Get

Figure 4: Outlier example.

10



(iii)[2 points] Why do you think L1 is less susceptible to outliers than L2?

L2 penalizes the square of the residual, so an outlier with residual r will have a loss of r2. On
the other hand, L1 will have a loss of only |r|. Therefore, if |r| > 1, this outlier will have a larger
influence on the L2 loss than L1, and, thus, a greater effect on the solution.

(vi)[2 points] Are outliers always bad and we should always ignore them? Why? (Give one short
reason for ignoring outliers, and one short reason against.)

Outliers are often “bad” data, caused by faulty sensors or errors entering values; in such cases,
the outliers are not part of the function we want to learn and should be ignore. On the other hand,
an outlier could be just an unlikely sample from the true distribution of the function of interest; in
these cases, the data point is just another sample and should not be ignored.

(v)[4 points] As with ridge regression in Equation 1, the regularized L1 regression in Equation 2
can also be viewed a MAP estimator. Explain why by describing the prior P (w) and the likelihood
function P (t | x,w) for this Bayesian learning problem. Hint: The p.d.f. of the Laplace distribution
is:

P (x) =
1
2b

e−|x−µ|/b.

As with ridge regression, the prior over each parameter is zero-mean Gaussian with variance
1/λ:

P (wi) ∼ N (0; 1/λ).

The parameters have independent priors:

P (w) =
∏

i

P (wi).

The likelihood function is Laplacian with mean x ·w:

P (t | x,w) =
1
2
e−|t−x·w|.
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(b) As mentioned in class, SVM regression is a margin-based regression algorithm that takes two
parameters, ε > 0 and C ≥ 0, as input. In SVM regression, there is no penalty for points that
are within ε of the hyperplane. Points that are further than ε are penalized using the hinge loss.
Formally, the SVM regression QP is:

ŵSV M = minw,ξ,ξ̄
1
2w.w + C

∑m
j=1(ξj + ξ̄j)

s.t. tj −
∑

i wihi(xj) ≤ ε + ξj
∑

i wihi(xj)− tj ≤ ε + ξ̄j

ξj ≥ 0, ξ̄j ≥ 0, ∀j
(i)[4 points] Plot a sketch of the loss function function used by SVM regression. Again, the x-axis
should be the residual tj −

∑
i wihi(xj) and the y-axis the loss function. However, do not include

the 1
2w.w term in this plot of the loss function.

residual

loss

0 ε−ε

Figure 5: Margin loss.

(ii)[2 points] Compared to L2 and L1, how do you think SVM regression will behave in the presence
of outliers?
The margin loss is very similar to L1, so the margin loss will be less susceptible to outliers than
L2. When compared to L1, the margin loss has an small region ([−ε, ε]) with zero penalty, thus,
seemingly, margin loss should be less susceptible to outliers than L1. However, ε is usually much
smaller than the outlier residual, thus, L1 and the margin loss will usually have very similar be-
havior.

(iii)[5 points] SVM regression can also be view as a MAP estimator. What is the prior and the
likelihood function for this case?

As with ridge regression, the prior over each parameter is zero-mean Gaussian, but now with
variance 2C:

P (wi) ∼ N (0; 2C).

The parameters have independent priors:

P (w) =
∏

i

P (wi).

The likelihood function is constant in [−ε, ε] and Laplacian with mean x ·w elsewhere:

P (t | x,w) =

{
1

2+2ε , for |t− x ·w| ≤ ε;
1

2+2εe
−(|t−x·w|−ε), for |t− x ·w| > ε.
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6 [20 points] Learning Theory

This question asks you to consider the relationship between the VC dimension of a hypothesis
space H and the number of queries the learner must make (in the worst case) to assure that it
exactly learns an arbitrary target concept in H.

More precisely, we have a learner with a hypothesis space H containing hypotheses of the form
h : X → {0, 1}. The target function c : X → {0, 1} is one of the hypotheses in H. Training
examples are generated by the learner posing a query instance xi ∈ X, and the teacher then
providing its label c(xi). The learner continues posing query instances until it has determined
exactly which one of its hypothesis in H is the target concept c.

Show that in the worst case (i.e., if an adversary gets to choose c ∈ H based on the learner’s
queries thus far, and wishes to maximize the number of queries), then the number of queries
needed by the learner will be at least VC(H), the VC dimension of H. Put more formally, let
MinQueries(c,H) be the minimum number of queries needed to guarantee learning target concept
c exactly, when considering hypothesis space H. We are interested in the worst case number of
queries, WorstQ(H), where

WorstQ(H) = maxc∈H [MinQueries(c,H)]

You are being asked to prove that

WorstQ(H) ≥ V C(H)

You will break this down into two steps:

(a) [8 points] Consider the largest subset of instances S ⊂ X that can be shattered by H. Show
that regardless of its learning algorithm, in the worst case the learner will be forced to pose
each instance x ∈ S as a separate query.

Because S is shattered by H, there will be at least one subset H∗ ⊂ H, where each h ∈ H∗

assigns one of the 2|S| possible labelings to S. Suppose the adversary chooses a target function
c such that c ∈ H∗.

The problem statement says the learner must pose queries until it determines exactly which
one of its hypothesis in H is the target concept. Let us assume the learner poses fewer than
|S| queries. We will show the learner cannot in this case have converged to just a single
consistent candidate hypothesis. Let xi ∈ S be one of the instances from S it has not used as
a query, and let A ⊂ S be the set of all instances from S the learner has queried. Because
H∗ shatters S there are at least two hypotheses h1 ∈ H∗ and h2 ∈ H∗ such that both h1

and h2 label A correctly, but for which h1(xi) 6= h2(xi). Therefore, the learner will not have
determined which one of the hypotheses in H (or even in H∗) is the target cocept.

(b) [5 points] Use the above to argue that WorstQ(H) ≥ V C(H).

We just showed in part (a) that WorstQ(H) ≥ |S|. By definition, V C(H) = |S|. Therefore,
WorstQ(H) ≥ V C(H).
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(c) [7 points] Is there a better case? In other words, if the learner knows that a friend (not an
adversary) will be choosing c ∈ H, and that the friend wishes to minimize the number of
learning queries, is it possible for the friend to choose a c that allows the learner to avoid
querying all of the points in S? More formally, if we define

BestQ(H) = minc∈H [MinQueries(c,H)]

then is the following statement true or false?

BestQ(H) ≥ V C(H)

Justify your answer.

False. In fact, the answer will depend on the exact X and H, and is therefore false in
general. To see why, consider the figure below, where X contains exactly 6 instances, and
H contains exactly 5 hypotheses. In this diagram,the circle associated with each h indicates
which members of X it labels positive. Notice VC(H)=2 in this figure, because the four
hypotheses in the lower left of H shatter points x1 and x2.

Suppose here that the learner first asks for the label of x3, and the teacher/friend responds
that the label of x3 is positive. There is only one hypothesis in H that labels x3 positive, so
the learner has exactly learned the target function from one example, despite the fact that
V C(H) = 2.

Notice an adversary could, in this case, respond that the label of x3 is negative, thereby forcing
the learner to continue to consider the 4 hypotheses that shatter x1 and x2.

While BestQ(H) ≥ V C(H) does not hold for this X and H, it will hold in other cases. For
example, if we add hypotheses to H in this example so that it shatters the entire instance
space X, then we will have BestQ(H) = V C(H).

X H

+

x1

x2

x3
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