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Machine Learning

Decision trees



Types of classifiers

We can divide the large variety of classification approaches into roughly two main
types

1. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks

3. Discriminative
- directly estimate a decision rule/boundary
- e.g., decision tree



Decision trees

* One of the most intuitive classifiers
« Easy to understand and construct
« Surprisingly, also works very (very) well*

Lets build a decision tree!

* More on this towards the end
of this lecture



Structure of a decision tree

A age > 26
* Internal nodes

. | income > 40K
correspond to attributes 1 (yes) C citizen
(features) (nO) F female

* Leafs correspond to

classification outcome

« edges denote
assignment

yes N0 yes
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Dataset

Attributes (features) Label
A A
TN\ \

Movie | Type Length | Director Famous actors | Liked?
m1 Comedy | Short Adamson | No Yes
m2 Animated | Short Lasseter | No No
m3 Drama Medium | Adamson | No Yes
m4 animated | long Lasseter | Yes No
m5S Comedy | Long Lasseter | Yes No
m6 Drama Medium | Singer Yes Yes
m7 animated | Short Singer No Yes
m8 Comedy | Long Adamson | Yes Yes
m9 Drama Medium | Lasseter | No Yes




Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes
If empty(A) or all n(L) are the same

status = leaf
class = most common class in n(L)
else

status = internal
a < bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A\ {a})
RightNode = BuildTree(n(a=0), A\ {a})
end
end



Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes

If empty(A) or all n(L)_are the same
status = leaf n(L): Labels for samples in

_ this set
class = most common class in n(L)

else
status = internal
a < bestAttribute(n,A)

LeftNode = BuildTree(n(a=1), A\ {a}).\Recursive calls to create left

RightNode = BuildTree(n(a=0), A \ {a})~— and right subtrees, n(a=1) is
the set of samples in n for
end which the attribute ais 1
end

We will discuss this function
next



ldentifying ‘bestAttribute’

« There are many possible ways to select the best
attribute for a given set.

« We will discuss one possible way which is based on
Information theory and generalizes well to non binary
variables



Entropy

« Quantifies the amount of uncertainty
associated with a specific probability
distribution

« The higher the entropy, the less
confident we are in the outcome

* Definition

H(X) =2~ p(X =c)log, p(X =c)

Claude Shannon (1916 —
2001), most of the work was
done in Bell labs



« So, If P(X=1) =1 then

Entropy HOO 10 4

* Definition 051

H(X) =3~ p(X =i)log, p(X =)

0 | >

0 0.5 1.0
Pr(X =1)

H(X) =-p(x=1)log, p(X =1) - p(x=0)log, p(X =0)
=—1logl-0log0=0

« If P(X=1) =.5then

H(X)=-p(x=1)log, p(X =1) - p(x=0)log, p(X =0)
=—.5log,.5-.5log, .5=-log,.5=1



Interpreting entropy

Entropy can be interpreted from an information
standpoint

Assume both sender and receiver know the distribution.
How many bits, on average, would it take to transmit one
value?

If P(X=1) = 1 then the answer is 0 (we don’t need to
transmit anything)

If P(X=1) = .5 then the answer is 1 (either values is
equally likely)

If O<P(X=1)<.5 or 0.5<P(X=1)<1 then the answer is
between 0 and 1

- Why?



Expected bits per symbol

 Assume P(X=1) =0.8
« Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04

* Lets define the following code
- For 11 we send O
- For 10 we send 10
- For 01 we send 110
- For 00 we send 1110



Expected bits per symbol

Assume P(X=1) =0.8
Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04
Lets define the following code

- For 11 we send O so: 01001101110001101110

- For 10 we send 10 can be broken to: 01 00 11 01 11 00 01 10 11 10
- For 01 we send 110

- Eor 00 we send 1110 which is: 110 111001100 1110110100 10

What is the expected bits / symbol?
(.64*1+.16*2+.16*3+.04*4)/2 = 0.8

Entropy (lower bound) H(X)=0.7219



Conditional entropy

Movie
length

Liked?

* Entropy measures the uncertainty in a

Short

Yes

specific distribution

Short

No

 What if both sender and receiver know

Medium

Yes

something about the transmission?

long

No

* For example, say | want to send the label

Long

No

(liked) when the length is known

Medium

Yes

 This becomes a conditional entropy

Short

Yes

problem: H(Li | Le=v)

Long

Yes

Medium

Yes

Is the entropy of Liked among movies with
length v




Conditional entropy: Examples for
specific values

Movie Liked?
length Lets Compute H(Li | Le:V)

Short Yes
1. H(Li| Le = S) = .92

Short No

Medium | Yes

long No

Long No

Medium | Yes

Short Yes

Long Yes

Medium | Yes




Conditional entropy: Examples for
specific values

Movie Liked?

length Lets compute H(Li | Le=v)
Short Yes

1. H(Li | Le = S) = .92
Short No
Medium | Yes 2. H(I—i Le = M) =0
long No 3. H(Li Le = L) = .92
Long No

Medium | Yes

Short Yes

Long Yes

Medium | Yes




Conditional entropy

Movie | Liked?

length « We can generalize the conditional entropy
Short | Yes iIdea to determine H( Li | Le)

Short No : -

_ - Thatis, what is the expected number of
Medium | Yes bits we need to transmit if both sides know
long No the value of Le for each of the records
Long No (samples)

Medium | Yes * Definition:  H(y | X)=>P(X =i)H(Y | X =i)
Short | Yes /

Long Yes _ ..

e Tve We explained how to compute this in

the previous slides




Conditional entropy: Example

Movie Liked?
length

Short Yes
Short No
Medium | Yes
long No
Long No
Medium | Yes
Short Yes
Long Yes
Medium | Yes

H(Y|X)=ZP(X=i)H(Y|X=i)

* Lets compute H( Li| Le)

H(Li|Le)=P(Le=3S) H(Li|Le=S)+
P(Le = M) H(Li | Le=M)+
P(Le=L) H(Li|Le=L)=
1/3*.92+1/3*0+1/3*.92 =

0.61

. we already computed:
' H(Li|Le = S) = .92
EH(Li|Le:I\/I):O
H(Li|Le =L) = .92

____________________________________



Information gain

How much do we gain (in terms of reduction in entropy)
from knowing one of the attributes

In other words, what is the reduction in entropy from this
knowledge

Definition: IG(Y|X)* = H(Y)-H(Y|X)

*IG(X|Y) is always = 0

Proof: Jensen inequality



Where we are

We were looking for a good criteria for selecting the best
attribute for a node split

We defined the entropy, conditional entropy and
Information gain

We will now use information gain as our criteria for a
good split

That is, BestAttribute will return the attribute that
maximizes the information gain at each node



Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes
If empty(A) or all n(L) are the same

status = leaf
class = most common class in n(L)
else

: Based on information gain
status = internal

a < bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A\ {a})
RightNode = BuildTree(n(a=0), A\ {a})
end
end



Example: Root attribute

P(Li=yes) = 2/3

H(Li) = .91
H(Li | T) =
H(Li | Le) =
H(Li | D) =
H(Li | F) =

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Example: Root attribute

P(Li=yes) = 2/3

H(Li) = .91
H(Li | T) = 0.61
H(Li | Le) = 0.61
H(Li | D) = 0.36
H(Li | F) = 0.85

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Example: Root attribute

P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) = 0.61

H(Li | Le) = 0.61
H(Li | D) = 0.36

H(Li | F) = 0.85

IG(Li | T) = .91-.61 = 0.3
IG(Li | Le) = .91-.61 = 0.3

IG(Li | D) = .91-.36 = 0.55
IG(Li | Le) = .91-.85 = 0.06

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Example: Root attribute

P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) = 0.61

H(Li | Le) = 0.61
H(Li | D) = 0.36

H(Li | F) = 0.85

IG(Li | T) = .91-.61 = 0.3

IG(Li | Le) = .91-.61 = 0.3

IG(Li | Le) = .91-.85 = 0.06

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Adamson

yes

Building a tree

Singer

yes

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Building a tree

Adamson Movie | Type Length | Director Famous | Liked
Singer actors ?
m2 Animated | Short Lasseter No No
m4 animated | Long Lasseter Yes No
es
y yes m5S Comedy Long Lasseter Yes No
m9 Drama Medium | Lasseter No Yes

We only need to focus on the records (samples)
associated with this node



BUlId”]g o tree We eliminated the

‘director’ attribute. All
samples have the same

director /

Adamson Movie | Type Length | Famous | Liked
Singer actors ?
m2 Animated | Short No No
m4 animated | Long Yes No
es
y yes m5 Comedy Long Yes No
m9 Drama Medium | No Yes

P(Li=yes) = 1/4 H(Li) = .81
H(Li | T)=0

H(Li|Le) =0

H(Li | F) = 0.5



Adamson

yes

Building a tree

Movie | Type Length | Famous | Liked
Singer actors ?
m2 Animated | Short No No
m4 animated | long Yes No
yes m5 Comedy Long Yes No
m9 Drama Medium | No Yes
P(Li=yes) = 1/4 H(Li) = .81
LT =0 | 16| T) =081 }
H(Li|Le)=0 IG(Li|Le)=0.81

H(Li | F) = 0.5

IG(Li | F) = .31




Building a tree

Adamson Movie | Type Length | Famous | Liked
Singer actors ?
Lasseter :
m2 Animated | Short No No
il m4 animated | long Yes No
es
y @ yes m5 Comedy Long Yes No
animated m9 Drama Medium | No Yes
comedy
dram

no yes no



Final tree

Adamson
Singer
Lassetear
A\ 4
animated
comedy
dram
no yes no

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Additional points

The algorithm we gave reaches homogonous nodes (or
runs out of attributes)

This is dangerous: For datasets with many (non relevant)
attributes the algorithm will continue to split nodes

This will lead to overfitting!



Avoiding overfitting: Tree pruning

« Split data into train and test set
« Build tree using training set
- For all internal nodes (starting at the root)
- remove sub tree rooted at node
- assign class to be the most common among training set
- check test data error
- if error is lower, keep change

- otherwise restore subtree, repeat for all nodes in
subtree



Continuous values

Either use threshold to turn into binary or discretize

Its possible to compute information gain for all possible
tresholds (there are a finite number of training samples)

Harder if we wish to assign more than two values (can
be done recursively)



The ‘best’ classifier

« There has been a lot of interest lately in decision trees.

« They are quite robust, intuitive and, surprisingly, very
accurate



Ranking classifiers
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Important points

Discriminative classifiers
Entropy

Information gain
Building decision trees



Random forest

A collection of decision trees

* For each tree we select a subset of the attributes
(recommended square root of |A|) and build tree using
just these attributes

* An inpyt sample is classified using majority voting
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