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Learning HMMs



A Hidden Markov model

A set of states {s, ... s}

- In each time point we are in exactly one of these states
denoted by g,

[T;, the probability that we start at state s,

A transition probability model, P(q; = s; | gy, = S))
A set of possible outputs X

- At time t we emit a symbol ceX

An emission probability model, p(o; = o | S))
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Inference iIn HMMs

« Computing P(Q) and P(q, = s) \/

« Computing P(Q | O) and P(q, = s;|0) \/

- Computing argmax,P(Q) \/



P1=P(O100=A, O101=B, 0102=A, 0103=B) for HMM1

P2=P(0100=A, 0101=B, 0102=A, 0103=B) for HMMZ2.
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Learning HMMs

 Until now we assumed that the emission and transition
probabilities are known

« This is usually not the case
- How is “Al” pronounced by different individuals?
- What is the probability of hearing “class” after “Al”?

While we will discuss learning the transition and
emission models, we will not discuss selecting the
states.

This is usually a function of domain knowledge.



Example

* Assume the model below

« We also observe the following seqguence:
1,2,2,5,6,5,1,2,3,3,5,3,3,2 .....

 How can we determine the initial, transition and emission

probabilities?



Initial probabilities

Q: assume we can observe the following sets of states:
AAABBAA
AABBBBB
BAABBAB
how can we learn the initial probabilities? k is the number of
sequences avialable for

A: Maximum likelihood estimation Ju
Find the initial probabilities at training

) T
r*=argmax | [ z(a)] | p(a; ] g.) =
k t=2

r*=argmax | [ z(q,)
k

A = #Al (HA+#B) ° ’O



Transition probabilities

Q: assume we can observe the set of states:
AAABBAAAABBBBBAAAABBBB
how can we learn the transition probabilities?
A: Maximum likelihood estimation
Find a transition matrix a such that remember that we

” defined ai,j:p(qtzsjlqt-lzsi)
a*=argmax, | [ z(g)] [ p(q,19..) =
k

=2

T
a*=argmax_ | | p(q, 19,

t=2

a, g = #AB | (#AB+#AA) ° ,ﬁ



Emission probabilities

Q: assume we can observe the set of states:
AAABBAAAABBBBBAA
and the set of dice values
12356 321134565 23
how can we learn the emission probabilities?
A: Maximum likelihood estimation

DA(D)= #AL / (HAT+#AZ2 + ... +#A6)

ﬁ



Learning HMMs

* In most case we do not know what states generated
each of the outputs (fully unsupervised)

e ... but had we known, it would be very easy to determine
an emission and transition model!

* On the other hand, if we had such a model we could
determine the set of states using the inference methods

we discussed



Expectation Maximization (EM)

« Appropriate for problems with ‘missing values’ for the
variables.

* For example, in HMMs we usually do not observe the
states



Expectation Maximization (EM):
Quick reminder

Two steps
E step: Fill in the expected values for the missing variables

M step: Regular maximum likelihood estimation (MLE) using the
values computed in the E step and the values of the other variables

Guaranteed to converge (though only to a local minima).

expected values for




Forward-Backward

« We already defined a forward looking variable
a,())=P(0,...0,nq, =5,)

« We also need to define a backward looking variable

/Bt(l) = P(Ot+11""OT |St =1)



Forward-Backward

« We already defined a forward looking variable
a,())=P(0,...0,nq, =5,)

« We also need to define a backward looking variable

:Bt(l) — P(Ot+1’.”’OT | g, = Si) =
Z ai,jbj (Ot+1),8t+1( )



Forward-Backward

« We already defined a forward looking variable
a,())=P(0,...0,nq, =5,)

« We also need to define a backward looking variable

,Bt(i) = P(Ot+1v”"OT |qt :Si)

« Using these two definitions we can show

/a/(T/P(NB):P(A,B)/P(B)
P(g, =5, |0,,---,0,) = WA T

>apG)




State and transition probabillities

* Probability of a state

VN 10V A B
P(d, =5, 10,0 ) AT S, (i)

« We can also derive a transition probability
P(0, =i, 0y = S; |0y,++,0) = 5,(1, J)

P(qt :Si’qt+l :Sj |011"',0-|-) =
_ o, (1)P(Q, = S [0, =5;)P(0,; | Oy = Sj)ﬁm(j) dif S (1, J)
PRACAC) h




E step

« Compute S(i) and S(i,)) for all t, i, and | (7<tsn, 1<igk,

2<j<k)

P(0; =5 |0+, 07)=5,(1)
P(qt =51 Uis1 = 3; |01""’0T):St(i’ J)



M step (1)

Compute transition probabillities:
(%)
] Zﬁ(i,k)
K

where

Adi, j)=2_S. (i, )



M step (2)

Compute emission probabilities (here we assume a
multinomial distribution):

define:
B.(i)= > S, (k)
tlo,=]

then




Complete EM algorithm for learning the
parameters of HMMs (Baum-Welch)

* Inputs: 1 .Observations O, ... O+

2. Number of states, model
Guess Initial transition and emission parameters
Compute E step: S(i) and S(1,))
Compute M step
Convergence?
Output complete model

NO

L A

We did not discuss initial probabllity estimation. These can
be deduced from multiple sets of observation (for example,
several recorded customers for speech processing)



Building HMMs—Topology

NN
==

Matching states Delétion states
Insertion states

No of matching states = average sequence length in the family
PFAM Database - of Protein families
(http://pfam.wustl.edu)



http://pfam.wustl.edu/

Building — from an existing alignment
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A HMM model for a DNA motif alignments, The transitions are
shown with arrows whose thickness indicate their probability. In
each state, the histogram shows the probabilities of the four
bases.



