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Machine Learning

Logistic regression



Back to classification

. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

. Generative:
- build a generative statistical model
- e.g., Bayesian networks

. Discriminative
- directly estimate a decision rule/boundary

- e.g., decision tree



Generative vs. discriminative
classifiers

* When using generative classifiers we relied on all points
to learn the generative model

« When using discriminative classifiers we mainly care
about the boundary
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Regression for classification

In some cases we can use linear regression for determining the
appropriate boundary.

However, since the output is usually binary or discrete there are
more efficient regression methods

Recall that for classification we are interested in the conditional
probability p(y | X ; 0) where 0 are the parameters of our model

When using regression 6 represents the values of our regression
coefficients (w).



Regression for classification

« Assume we would like to use linear regression to learn the
parameters for p(y | X ; 0)

 Problems? wT'X >0 = classify as 1

w'X <0 = classify as -1
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The sigmoid function
p(y| X;6)

« To classify using regression models
we replace the linear function with the
sigmoid function:

Always between 0 _ 1 1
Y - g(h) _ —h st
and 1 l+e

* Using the sigmoid we set (for binary e
classification problems)

p(y=0]|X;0)=g(w'X) =

p(y=1| X;0)=1-g(w'X) =

_
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The sigmoid function

X;0
To classify using regression models p(y | )
we replace the linear function with the
sigmoid function:
=y ]
l+e .. Note that we are
defining the

= probabilities in terms

5., of p(y|X). No need to
1 - use Bayes rule here!

p(y=0] X;0) = Ej{ /

p(y=1|X;0)=1-g(w'X) =

;
1+e% %



Y=1

Y=0

Logistic regression vs
regression

Linear Probability Model




Determining parameters for logistic
regression problems

Defining a new

* So how do we learn the parameters? function, g
« Similar to other regression problems \
we look for the MLE for w 1

p(y =0]X;0) =g(X;w) = —
« The likelihood of the data given the l+e

model is: w'X
p(y=1| X;0) =1-g(X;w) =

X

,
1+e" ”

L(Y| ><;W) — H(l— g(Xi;W))yi g(xi;w)(l—yi)




Solving logistic regression

problems 9wy =
1+e
1-g(xim ==

* The likelihood of the data is:  L(y| X;w) :H(l_ g(X. ;W)Y g (X, ;w)&

 Taking the log we get:

LL(y | X;w)=>"" v, In(—g(X;;w)) + (- y;) In g (X;;w)

=3y 1;}?>((XW;V) +Ing(X,;w)

N WX
=Y yw'X; —In(l+e" ™)




Maximum likelihood estimation

—I( )——Z Lyw X, —In(+e"™)} ) =
=Zi:1><i‘{yi —(1-9(X;;w))} 1-g(X; w)—lifwxx
=3 XMy - p(y' =1 X;;w)}

Taking the partial

derivative w.r.t. |
each component of Bad news: No close
form solution!

the w vector

Good news: Concave
function



Gradient ascent

Aaw Slope = 0z/ ow

Z=X(y-g(w;Xx))
Az

W
- Going Iin the direction to the slope will lead to a larger z

 But not too much, otherwise we would go beyond the
optimal w



Gradient descent

2=(f(W)-y)2 Slope = 0z/ ow

W

- Going in the opposite direction to the slope will lead to
a smaller z

 But not too much, otherwise we would go beyond the
optimal w



Gradient ascent for logistic
regression

o100 = S X~ g0 v

We use the gradient to adjust the value of w:

W wl 23 Xy, — (@ g(X;;w)}

Where ¢ is a (small) constant



Algorithm for logistic regression

1. Chose A
2. Start with a guess for w

OIS W wh s Xy, - (- g (X W)}
4. If no improvement for

LL(y | X;w) =Dy, In(—g(X;;w)) +(L—y,) In g (X;;w)

stop. Otherwise go to step 3

Example



Regularization

Similar to other data estimation problems, we may not have enough
samples to learn good models for logistic regression classification

One way to overcome this is to ‘regularize’ the model, impose
additional constraints on the parameters we are fitting.

For example, lets assume that w' comes from a Gaussian
distribution with mean 0 and variance c? (where o2 is a user defined
parameter): wi~N(0, ¢?)

In that case we have a prior on the parameters and so:

p(y =18 X) oc p(y =1| X;60) p(6)



Regularization

« If we regularize the parameters we need to take the prior into
account when computing the posterior for our parameters

p(y=18]| X)oc p(y=1| X;0)p(0)

* Here we use a Gaussian model for the prior. Assuming mean
- Thus, the log likelihood changes to : of 0 and

J removing terms
LL(y;w| X) = Z—l yW'X, —In(l+e" ) - Z(W >/ that are not

dependent on w

« And the new update rule (after taking the derivative w.r.t. w') is:

w!
WJ <_WJ+8Z XJ{y| (1 g(XHW))} g_
\ "
The variance of
Also known as the MAP our prior model

estimate



Regularization

There are many other ways to regularize logistic regression

The Gaussian model leads to an L2 regularization (we are trying to
minimize the square value of w)

Another popular regularization is an L1 which tries to minimize |w|



Logistic regression for more
than 2 classes

Logistic regression can be used to classify data from more than 2
classes. Assume we have k classes then:

 for i<k we set
p(y=i| X;0) =g +wx' +...+W'x?) = g(w; X)

€ 0 dd
where 0(z)=—7 Z =W +WX +...+W X

k-1
And for k we have p(y:k|X;¢9):1—z p(y=i|X;0)=
=1

1
p(y=k|X;0)=—7

1+ e”
-1




Logistic regression for more
than 2 classes

» Logistic regression can be used to classify data from more than 2
classes. Assume we have k classes then:

 for i<k we set
p(y=i| X;0) =g +wx' +...+W'x?) = g(w; X)

e Binary logistic regression is a
where  0(Z;)=— m y 109 J

! ! special case of this rule




Update rule for logistic
regression with multiple classes

0
oW

i
m

W) =3 XIS, (y.) - p(y, =m| X,;w)}

Where 6(y;)=1 if y=m
and o(y;)=0 otherwise

The update rule becomes:

Wi wh +e> 0 XS, (y) - ply, =m| X,;w)}



Data transformation

« Similar to what we did with linear regression we can extend logistic
regression to other transformations of the data

p(y =1] X;w) = g(W, + W, (X) +...+ W ¢" (X))

 As before, we are free to choose the basis functions



Important points

Advantage of logistic regression over linear regression for
classification

Sigmoid function

Gradient ascent / descent
Regularization

Logistic regression for multiple classes



Logistic regression

 The name comes from the logit transformation:

0g PO=I1X10) o 0(@)
p(y=kIX;0) " g(z)

=W’ + WX+, WX




