10-701

Machine Learning

http://www.cs.cmu.edu/~epxing/Class/10701-15F/



Organizational Info

All up-to-date info is on the course web page (follow links from my page).
Instructors

- Eric Xing

- Ziv Bar-Joseph

TAs: See info on website for recitations, office hours etc.
See web page for contact info, office hours, etc.

Piazza would be used for questions / comments. Make sure you are subscribed.



Zhiting Hu
- Research: large scale machine learning and
their applications in NLP/CV.
- Homepage: http://www.cs.cmu.edu/~zhitingh/
- Contact: zhitinghu@gmail.com



http://www.cs.cmu.edu/~zhitingh/
mailto:zhitinghu@gmail.com
mailto:zhitinghu@gmail.com

Mrinmaya Sachan (mrinmays@cs.cmu.edu)

GHC 8013
Office Hours:
Thu 11AM-12Noon

s | am Interested In:
- - Structured Prediction
- NLP




Yuntian Deng

Research: large scale
machine learning.

Contact:

yuntiand@cs.cmu.edu



mailto:yuntiand@cs.cmu.edu?subject=
mailto:yuntiand@cs.cmu.edu?subject=

Xun Zheng (xunzheng@cs.cmu.edu)

| work on...
« MCMC
e Distributed machine learning




Hao Zhang
(hao@cs.cmu.edu)
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Find me: GHC 8116
Office Hours:
Friday 3.30 pm — 4.30
pm
Interest:
Distributed Machine
Learning
Deep Learning
Applications in computer
vision



Yan Xia

2nd year ML Masters student

Research Interests:

* Machine learning applications in drug discovery and
development

* |dentifying and modeling biological interactions



9/3 Intro to probability, MLE
9/8 No class

9/10 Classification, KNN

9/15 No class, Jewish new year
9/17 Decision trees - PS1 out
9/22 Naive Bayes

Intro and classification
(A.K.A. ‘supervised
learning’)

9/24 Linear rearession

9126 Logic  11/17 (Monday): Midterm

10/1 Perceptron, Neural networks - PS1 due/PS2 out

10/6 Deep learning, SVM1

10/10 SVM 2

10/13 Evaluating classifiers , Bias — Variance decomposition
10/15 Ensemble learning — Boosting, RF PS2 due / PS3 out
10/20 Unsupervised learning — clustering

Clustering
(‘Unsupervised learning’)

10/22 Unsupervised learning — clustering / project proposal due
10/27 Semi-supervised learning

10/29 Learning theory 1 - PS3 due / PS4 out
11/3 PAC learning

11/5 Graphical models, BN

11/10 - BN

11/12 - Undirected graphical models / PS4 due
11/17 — Midterm

11/19 — HMM - PS5 out

11/24 — HMM inference

12/1 — MDPs / Reinforcement learning / ps5 due

Probabilistic representation
and modeling (‘reasoning
under uncertainty’)

N

12/3 — Topic models-

12/4 - Project poster session ApplICatI ons
12/8 —Computational Biology Of M |_
12/10 — no class



Grading

® 5 Problem sets - 40%
® Project - 35%
® Midterm - 25%



Class assignments

® 5 Problem sets

- Most containing both theoretical and programming assignments
® Projects

- Groups of 1-2

- Open ended. Would have to submit a proposal based on your interest. We will
also provide suggestions on the website.

Recitations
- Twice a week (same content in both)

- Expand on material learned in class, go over problems from previous classes
etc.



What iIs Machine Learning?

Easy part. Machine
Hard part: Learning

= Short answer: Methods that can help
generalize information from the observed data
so that it can be used to make better
decisions in the future



What Is Machine Learning?

Longer answer: The term Machine Learning is used to characterize a number of
different approaches for generalizing from observed data:

Supervised learning
- Given a set of features and labels learn a model that will predict a label to a
new feature set

 Unsupervised learning
- Discover patterns in data

 Reasoning under uncertainty
- Determine a model of the world either from samples or as you go along

 Active learning
- Select not only model but also which examples to use



Paradigms of ML

Supervised learning
- Given D = {X,,Y;} learn a model (or function) F: X, -=>Y,

Unsupervised learning
Given D = {X;} group the data into Y classes using a model (or function) F: X; ->'Y;

Reinforcement learning (reasoning under uncertainty)
Given D = {environment, actions, rewards} learn a policy and utility functions:

policy: F1: {e,r} - > a
utility: F2: {a,e}- >R

Active learning
- Given D = {X;,Y;}, {Xj} learn a function F1 : {X;} -> X, to maximize the success of
the supervised learning function F2: {X;, X, }->Y



Recommender systems
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1. Pattern Recoqgnition and Machine Learning (Information Science and Statistics)
by Christopher M. Bishop (Oct 1, 2007)
Average Customer Review! sirininin’ (28]
In Stock
List Price: $84.55 _
Price: $62.60 L'ﬁ Add to cart I Add to Wish List
s LA used & new from $56.6E4
[ Jrownit || Metinterested x|¥rorerersy Rate it
Recornrended because you purchazed Learning in Graphical Models and rmore (Fix this)
2. Causality: Models, Reasoning, and Inference
by Judea Pearl {Mar 13, 2000)
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In Stock
List Price: $50.00 _
Price: $38.50 L'ﬁ Add to cart I Add to Wish List
26 used & new from $32.01
[:J I own it [:J Mot interested  x|TrErirTTLT Rate it
Recornrended because you purchazed Probabilistic Reasoning in Intelligent Systemis and rnore (Fix this)
3. The Renewable Energy Handbook: A Guide to Rural Enerqy Independence, Off-Grid and Sustainable Living
by william H, Kemp (april 1, 2006)
Average Customer Review: ririnis [+ (1£)
In Stock
List Price: $29.595 .
Price: $19.77 L'ﬁ Add tocart || Add to Wish List
40 used & new from §18.25
[:J I own it [:J Mot interested x| ErETTrnsLy Rate it
Recornrmended because you purchazed Wind Power, Revised Edition and rmore (Fix this)
4, Learning Bayesian Networks {Artificial Intelligence)

by Richard E. Neapaolitan {April 6, 2003)

oo Cstornor Dosio N e I

Rkt v, amazon, comPattern-Recognition-Learning-Information-Statistics /dp/0337 310738 ref=pd_ws_ir_b_17pf_rd_p=2583721018pf _rd_s=center-1&pl_rd_t=1501&pf_rd_i=listpf_rd_m=ATWPDKIKX0DERERF_rd_r=1BQMM3S3P493E3009EHP
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Primarily supervised



NELL: Never-Ending Language Learning

Can computers learn to read? We think so. "Read the Web" i1s a research project
that attempts to create a computer system that learns over time to read the web.
Since January 2010, our computer system called MELL (Mever-Ending Language
Learner) has been running continuously, attempting to perform two tasks each
day:

» First, it attempts to "read,” or extract facts from text found in hundreds of

millions of web pages (e.g., playsInstrument (George Harrison, Browse the Knowledge Base!
guitar)).

* Second, it attempts to improve its reading competence, so that tomorrow it can extract more facts from the web, more

accurately. Semi supervised learning

At present, NELL has accumulated a knowledge base of 367,123 beliefs that it has read from various web pages. It is not perfect,
but NELL is learning. You can track NELL's progress below or @cmunell on Twitter, browse and download its knowledge base, read
more about our technical approach. or join the discussion group.

Recently-Learned Facts =witter

instance iteration date learned confidence

robert_trent_jones_sr is an Australian person 473 27-dec-2011 100.0 28 &f
quality_gift is a character trait 475 29-dec-2011 995 2= S
confectioners_sugar is a food 473 27-dec-2011 954 & S
st__petersburg_times is a newspaper 472 26-dec-2011 100.0 28 &f
scott_olynek 1s a Canadian person 473 27-dec-2011 941 28 S
perth is a city that lies on the river swan_river 472 26-dec-2011 992 25 &
florida_state_university is a sports team also known as state_university 472 26-dec-2011 1000 28 S

press_enterprise i1s a newspaper in the city riverside 472 2b-dec-2011 984 25 Sf
n., S




Driveless cars

Supervised and
reinforcement learning



Helicopter control

Reinforcement learning



Biology

ACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAACGCTGAGCAATTCGATAGCAATTC
GATAACGCTGAGCAATCGGATAACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAACG
CTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAATCGGATATCGATAGCAATTCGATAAATC
GGATAACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAACGCTGAGCAATTCGATAGC
AATTCGATAACGCTGAGCAATCGGATATCGATAGCAATTCGATAACGCTGAGCAACGCTGAGCA
ATTCGATAGCAATTCGATAACGCTGAGCAATCGGATAACGCTGAGCAATTCGATAGCATTCGAT
AACGCTGAGCAAQ AATCGGATAACGCTG
AGCAATTCGATAC TCGATAACGCTGA
GCAATCGGATAAC € e -6 -6-6F-6A-6AACGCTGAGCAATTC
GATAGCAATTCGATAGCAA ATAGCAATTCGATAACGCTGAGCAACGCTGAGCAATTCGAT
AGCAATTCGATAACGCTGAGENATCGGATAACGCTGAGCAATTCGATAGCAATTCGATAACGCT
GAGCAACGCTGAGCAATTAEATAGCAATTCGATAACGCTGAGCAATCGGATATCGATAGCAATT
CGATAACGCTGAGCAACGHTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAATCGGATAAC
G ] ] SGCTGAGCTGAGCAATTCGATAGCAATTCGATAACG
ct\Which part IS the gene? ~GATAGCAATTCGATAACGCTGAGCAACGCTGAGCA
AT AATCGGATATCGATAGCAATTCGATAACGCTGAGCA
ACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAATCGGATAACGCTGAGCAATTCGAT
AGCATTCGATAACGCTGAGCAACGCTGAGCAATTCGATAGCAATTCGATCGGATAACGCTGAGC
AATTCGATAGCAATTCGATAACGCTGAGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCA
ATCGGATAACGCTGAGCAATTCGATAGCA. "GAGCAATTCGAT

AGCAATTCGATAACGCTGAGCAATCGGAT. Supervised and GAGCAACGCTGA
GCAATTCGATAGCAATTCGATAACGCTGA unsupervised |earning (Can "TCGATAGCATTC
GATAACGCTGAGCAACGCTGAGCAATTCG "AATCGGATAACG

CTGAGCAATTCGATAGCAATTCGATAACG: also use active learning) attccaTtaacce
TGAGCAATCGGATAACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAACGCTGAGCAA
TTCGATAGCAATTCGATAGCAATTCGATAGCAATTCGATAACGCTGAGCAACGCTGAGCAATTC
GATAGCAATTCGATAACGCTGAGCAATCGGATAACGCTGAGCAATTCGATAGCAATTCGATAAC
GCTGAGCAACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAATCGGATATCGATAGCA
ATTCGATAACGCTGAGCAACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCAATCGGAT
AACGCTGAGCAATTCGATAGCAATTCGATAACGCTGAGCTGAGCAATTCGATAGCAATTCGATA
ACGCTGAGCAATCGGA



Common Themes

Mathematical framework

- Well defined concepts based on explicit assumptions
Representation

- How do we encode text? Images?

Model selection

- Which model should we use? How complex should it be?
Use of prior knowledge

- How do we encode our beliefs? How much can we assume?



(brief) Intro to probability



Basic notations

® Random variable
- referring to an element / event whose status Is unknown:
A = “it will rain tomorrow”
® Domain (usually denoted by Q)
- The set of values a random variable can take:
- “A = The stock market will go up this year”: Binary
- “A = Number of Steelers wins in 2012": Discrete

- “A = % change in Google stock in 2012”: Continuous



Axioms of probability (Kolmogorov’s axioms)

A variety of useful facts can be derived from just three axioms:
1.0<PA)<1

2. P(true) =1, P(false) =0

3. P(AuB)=P(A) + P(B)— P(AnB)

There have been several
other attempts to provide a
foundation for probability
theory. Kolmogorov's axioms
are the most widely used.



Priors

Degree of belief
INn an event in the
absence of any
other information

NO rain

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8



Conditional probability

® P(A=1|B =1): The fraction of cases where A is true if B is true

P(A = 0.2)

P(A|B = 0.5)




Conditional probability

® In some cases, given knowledge of one or
more random variables we can improve upon
our prior belief of another random variable

® For example:
p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/4

p(didn’t sleep in movie | liked movie) = 3/4

Slept

I
x
9
Q.

OO, Ok, |FP | O

PRIk, IOOCO|F | |O




Joint distributions

The probability that a set of random variables will take a
specific value is their joint distribution.

Notation: P(A A B) or P(A,B)

Example: P(liked movie, slept)




Joint distribution (cont)

Evaluation of classes
P(class size > 20) = 0.6

P(summer) = 0.4

30 R -
P(class size > 20, summer) = ? 70 R 1
12 S .
8 S -
56 R A
24 S =
10 S =
23 R B
9 R 2

45 R 1



Joint distribution (cont)

Evaluation of classes
P(class size > 20) = 0.6

P(summer) = 0.4

30 R 5
P(class size > 20, summer) = 0.1 70 R 1
12 S 5
8 S 3
56 R 1
24 S 5
10 S 3
23 R 3
9 R 2

45 R 1



Joint distribution (cont)

P(eval=1)=0.3 30 R 2
P(class size > 20, eval =1) = 0.3 70 R 1
12 S 2
8 S 3
56 R 1
24 S 2
10 S 3
23 R 3
9 R 2

45 R 1



Joint distribution (cont)

Evaluation of classes

P(eval=1) =0.3 30 R 2
P(class size > 20, eval = 1) = 0.3 70 R 1
12 S 2
8 S 3
56 R 1
24 S 2
10 S 3
23 R 3
9 R 2

45 R 1



Chalin rule

® The joint distribution can be specified in terms of conditional probability:
P(A,B) = P(A|B)*P(B)

® Together with BQygs rule (whish is actually derived from it) this is one of the most
powerful rules in grsabilistic reaspning




Bayes rule

® One of the most important rules for this class.
® Derived from the chain rule:

P(A,B) = P(A | B)P(B) = P(B | A)P(A)
® Thus,

Thomas Bayes was
an English
clergyman who set
out his theory of
probability in 1764.



Bayes rule (cont)

Often 1t would be useful to derive the rule a bit further:

P(BIA)P(A) _ P(BIA)P(A)
P(B) ) P(BIAP(A

/:(B,Azl) P(B.A=0)

This results from:

T ol

P(AB)-




Density estimation



Density Estimation

® A Density Estimator learns a mapping from a set of attributes to a Probability

Input data for a
variable or a set of
variables

> Density
» Estimator

- Probability




Density estimation

® Estimate the distribution (or conditional distribution) of a random variable
® Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year

- Continuous

height, weight, temp.,



When do we need to estimate densities?

® Density estimators can do many good things...

= Can sort the records by probability, and thus spot weird records (anomaly
detection)

= Can do inference: P(E1|E2)
Medical diagnosis / Robot sensors

= Ingredient for Bayes networks and other types of ML methods



Density estimation

® Binary and discrete variables:

Easy: Just count!

® Continuous variables:

Harder (but just a bit): Fit
a model



Learning a density estimator for discrete
variables

#records m which x, = u

IA’(xl. =u) =
total number of records

A trivial learning algorithm!

But why Is this true?



Maximum Likelihood Principle

We can define the likelihood of the data given the model as
follows:

]S(dataset | M) = 1’?’(x1 AXyeo o AX, | M) = Hf’(xk | M)

\ =

M is our model (usually a
collection of parameters)
For example M is

- The probability of ‘head’ for a coin flip
- The probabilities of observing 1,2,3,4 and 5 for a dice

- elc.



Maximum Likelihood Principle

P(dataset | M)=P(x, Ax,...~nx, | M)=] [ P(x, | M)
k=1

* Our goal is to determine the values for the parameters in M

* We can do this by maximizing the probability of generating the observed
samples
* For example, let @ be the probabilities for a coin flip
* Then
L(Xy, - X0 | ©) = p(X1| O) ... p(X, | O)

* The observations (different flips) are assumed to be independent
* For such a coin flip with P(H)=q the best assignment for @, Is

argmax, = #H/#samples
* Why?



Maximum Likelihood Principle: Binary
variables

* For a binary random variable A with P(A=1)=q
argmax, = #1/#samples

* Why?

Data likelihood: FP(PIM)=g*{1-q)*

We would like to find: 29M&Xq " (1—-a)"

Omitting terms that /

do not depend on g




Maximum Likelihood Principle

Data likelihood: P(D|M)=qg™(@1-0q)™
We would like to find;: argmax,q™(1—q)™

a " N N — N n n,—
0@ =ng 0-0)" ~qtn,@- g

a _
-
ng* (1-a)" -q"n,(1-q)" " =0=
q" " (1-a)" " (n,(1-9)—an,) =0=
nl(l_Q)_qnz =0=

n, =ng+n,q=

0=

n,+n,




LLog Probabilities

When working with products, probabilities of entire datasets often get
too small. A possible solution is to use the log of probabillities, often
termed ‘log likelihood’

n n

log P(dataset | M) =log | [ P(x, | M)=) log P(x, | M)

\ k=1 k=1

Maximizing this likelihood function is the
same as maximizing P(dataset | M)

OF T T T T -__--&---—-_--'-——
Log values _'____,....._......-..-...
2 - o
between O and 1 P |

™ ! In some cases moving to log space would
! also make computation easier (for

s 1 example, removing the exponents)
I

= 0 0.2 04 06 08 1



Density estimation

® Binary and discrete variables:

® Continuoiis variahles:
Easy: Just count!

\ But what If we

only have very

/ few samples?
Harder (but just a bit): Fit

a model



How much do grad students sleep?

® Lets try to estimate the distribution of the time students spend sleeping (outside
class).



Possible statistics

Sleep time
Mean of X:
E{X}
7.03
* Variance of X:
Var{X} = E{(X-E{X})"2} -
3.05

Frequency

Hours



Covariance: Sleep vs. GPA

*Co-Variance of X1,
X2:
Covariance{X1,X2} =
E{(X1-E{X1})(X2-E{X2})}
=0.88

GPA

Sleep hours



Statistical Models

» Statistical models attempt to characterize properties of the
population of interest

* For example, we might believe that repeated measurements
follow a normal (Gaussian) distribution with some mean p and
variance o2, X ~ N(u,o?)

where
(x|©)= g 5
p X — e 257
\/27[02

and @=(u,0?) defines the parameters (mean and variance) of the
model.



The Parameters of Our Model

0.45

- A statistical model Is a N
collection of distributions:; the 0_;5_
parameters specify individual o3

distributions X ~ N(i,0%) ™%

» We need to adjust the 001:

parameters so that the resulting ,.|
distribution fits the data well oo

0
4



The Parameters of Our Model

0.45

- A statistical model Is a oal
collection of distributions; the
parameters specify individual ™

distributions x ~ N(u,c?

* We need to adjust the 0_1'5_

parameters so that the resulting o
distribution fits the data well **|

o

351

0 | |
4 2 0 2 4



Computing the parameters of our model

® Lets assume a Guassian distribution
for our sleep data

® How do we compute the parameters
of the model?

Frequency

Hours



Maximum Likelihood Principle

* We can fit statistical models by maximizing the probability of
generating the observed samples:

L(Xy, - X0 | @) =p(X1 | B) ... p(X, | O)
(the samples are assumed to be independent)

* In the Gaussian case we simply set the mean and the variance
to the sample mean and the sample variance:

n n

0 I R (o



Important points

Random variables

Chain rule

Bayes rule

Joint distribution, independence, conditional independence
MLE



Probability Density Function

® Discrete distributions

.III-- ;
1 2 3 4 5 6

® Continuous: Cumulative Density Function (CDF): F(a)

o) Plx <a) = /_; f(r)dr




Cumulative Density Functions

® Total probability / f gg)dﬂ: — 1

® Probability Density Function (PDF)

® Properties:

Pla<z<b)= /ﬁ f(z)dz = F(b) — F(a)

lim F(x)=

€£r— — OC

Iim F(z)=1 ——
lim F(z) -

F(a) > F(b) Va > b



® Mean/Expected Value:

Expectations

Flz| =z = /:Ef(:t:)dﬂ:

® Variance:

Var(z) = E|(z — 7)%] = E[z?] — (z)?

® In general:

E[z?] = /sz(m)dﬂ:

Blg(a)) = [ 9(@)f()d



Multivariate

® Joint for (x,y)
P(@yea=| /A F(z, y)dzdy

® Marginal:

f(z) = / #(z, y)dy

® Conditionals:

f(z,y)
f(y)

flzly) =

® Chain rule:

flz,y) = fzly) f(y) = f(y|z) f(z)



Bayes Rule

f(ylz) f(z)
f(y)

® Standard form:

flzly) =

® Replacing the bottom:

_ | ) f(z)
fzly) = [ (o) f(z)dz




Binomial

® Distribution:

x ~ Binomial(p,n)
Pz =k) = (:) "1 —p)n*

® Mean/Var:



Uniform

® Anything is equally likely in the region [a,b]

® Distribution:

x ~ U(a,b)
® Mean/Var

r1
_ b—a @ i L E b
flz) = i 0 otherwise

Elz] = a-+b
2
2 EJ b?.
Var(z) = . _H; T



Gaussian (Normal)

® If I look at the height of women in country xx, it will look approximately Gaussian

® Small random noise errors, look Gaussian/Normal

® Distribution:

f 1 —(z—p)*
o~ N, 0?) I@ = Jomg®
ma
® Mean/var
Elz| = p -

10



Why Do People Use Gaussians

® Central Limit Theorem: (loosely)

= Sum of a large number of IID random variables is approximately Gaussian



Multivariate Gaussians

® Distribution for vector x

ET:(I:_[, :-:E"HT)T:- ETNN(JM,E)
® PDF: \

f(z) = = ie—%(m—n] 7 (z—p)

PO
Efa] = p = (Elz], .., Elaw])"
Var(z:) Cov(z1,z2) ... Cov(zi,zN) \
Cov(xs,x) Var(xzs) ... Cov(xy,zN)

Var(z) — X =

Cov(zn,z1) Cov(zn,z2) ... Var(zwy) }



Var(z) — X =

Multivariate Gaussians

Var(z;) Cov(z1,z2) ... Cov(zi,zN) \
Cov(xs,x) Var(xzs) ... Cov(zy,zN)
Cov(zn,x1) Cov(zn,z2) ... Var(zn) }

COV(X11 Xz) — %Zn:(xl,i _:ul)(xz,i _luz)
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Anti-correlated

Covariance examples

o - ] (1] = m o =~ ] K0
T T T T T T T T T

Covariance: -9.2

ndependent (almost)
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Covariance: 0.6

22

20F
18 |
16 |
14+
12+
10F

Correlated

o . B8 o (un)
T T T T

Covariance: 18.33



Sum of Gaussians

® The sum of two Gaussians is a Gaussian:

z ~ N(p,0°) y~ N(py,0,)

ar +b~ N(ap+ b, (ac)?)

z+y~ N+ py,0° +0,)



