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Machine Learning 

http://www.cs.cmu.edu/~epxing/Class/10701-15F/ 



Organizational info 

• All up-to-date info is on the course web page (follow links from my page).  

• Instructors 

      - Eric Xing 

      - Ziv Bar-Joseph 

 

• TAs: See info on website for recitations, office hours etc. 

• See web page for contact info, office hours, etc. 

• Piazza would be used for questions / comments. Make sure you are subscribed.  

 



Zhiting Hu 
• Research: large scale machine learning and 

their applications in NLP/CV.  

• Homepage: http://www.cs.cmu.edu/~zhitingh/ 

• Contact: zhitinghu@gmail.com 

http://www.cs.cmu.edu/~zhitingh/
mailto:zhitinghu@gmail.com
mailto:zhitinghu@gmail.com




Yuntian Deng 
• Research: large scale 

machine learning.  

• Contact: 

yuntiand@cs.cmu.edu 

mailto:yuntiand@cs.cmu.edu?subject=
mailto:yuntiand@cs.cmu.edu?subject=




Hao Zhang 

(hao@cs.cmu.edu) 

Find me: GHC 8116 

Office Hours:  

 Friday 3.30 pm – 4.30 

pm 

Interest: 

    Distributed Machine 

Learning 

    Deep Learning 

    Applications in computer 

vision   

 





• 9/3 Intro to probability, MLE 

• 9/8 No class 

• 9/10 Classification, KNN 

• 9/15 No class, Jewish new year  

• 9/17 Decision trees  - PS1 out 

• 9/22 Naïve Bayes  

• 9/24 Linear regression  

• 9/26 Logistic regression 

• 10/1 Perceptron, Neural networks  - PS1 due / PS2 out 

• 10/6 Deep learning, SVM1  

• 10/10 SVM 2  

• 10/13 Evaluating classifiers , Bias – Variance decomposition  

• 10/15 Ensemble learning – Boosting, RF PS2 due / PS3 out 

• 10/20 Unsupervised learning – clustering  

• 10/22 Unsupervised learning – clustering  / project proposal due 

• 10/27 Semi-supervised learning 

• 10/29 Learning theory 1  - PS3 due / PS4 out 

• 11/3 PAC learning  

• 11/5 Graphical models, BN  

• 11/10 – BN  

•  11/12  - Undirected graphical models / PS4 due 

• 11/17 – Midterm  

• 11/19 – HMM – PS5 out 

• 11/24 – HMM inference 

• 12/1 – MDPs / Reinforcement learning / ps5 due 

• 12/3 – Topic models-  

• 12/4  - Project poster session 

• 12/8 –Computational Biology  

• 12/10 – no class 

 

Intro and classification 

(A.K.A. ‘supervised 

learning’) 

Clustering  

(‘Unsupervised learning’) 

Probabilistic representation 

and modeling (‘reasoning 

under uncertainty’)  

Applications 

of ML 

11/17 (Monday): Midterm 



Grading 

• 5 Problem sets       - 40% 

• Project                    - 35% 

• Midterm                  - 25% 



Class assignments 

• 5 Problem sets 

     - Most containing both theoretical and programming assignments 

• Projects 

     - Groups of 1-2 

     - Open ended. Would have to submit a proposal based on your interest. We will 

also provide suggestions on the website. 

Recitations 

     - Twice a week (same content in both) 

     - Expand on material learned in class, go over problems from previous classes 

etc. 



What is Machine Learning? 

Easy part: Machine 

Hard part: Learning 

- Short answer: Methods that can help 

generalize information from the observed data 

so that it can be used to make better 

decisions in the future 

 



What is Machine Learning? 

Longer answer: The term Machine Learning is used to characterize  a number of 

different approaches for generalizing from observed data: 

 

•  Supervised learning 

    - Given a set of features and labels learn a model that will predict a label to a 

new feature set 

 

• Unsupervised learning 

    - Discover patterns in data 

 

• Reasoning under uncertainty 

    - Determine a model of the world either from samples or as you go along 

 

•  Active learning 

    - Select not only model but also which examples to use 

 

 



Paradigms of ML 

 

•  Supervised learning 

    - Given D = {Xi,Yi} learn a model (or function) F: Xk -> Yk 

 

• Unsupervised learning 

    Given D = {Xi} group the data into Y classes using  a model (or function) F: Xi -> Yj 

 

• Reinforcement learning (reasoning under uncertainty) 

    Given D = {environment, actions, rewards} learn a policy and utility functions: 

  

    policy: F1: {e,r} - > a 

    utility: F2:  {a,e}- > R 

 

•  Active learning 

    - Given D = {Xi,Yi} , {Xj} learn a function F1 : {Xj} -> xk to maximize the success of 

the supervised learning function F2: {Xi , xk}-> Y  

 



Recommender systems 

Primarily supervised 

learning 



Semi supervised learning 



Driveless cars 

Supervised and 

reinforcement learning 



Helicopter control 

Reinforcement learning 
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Biology 

Which part is the gene? 

Supervised and 

unsupervised learning (can 

also use active learning) 



Common Themes 

 

• Mathematical framework 

     - Well defined concepts based on explicit assumptions 

•  Representation 

     - How do we encode text? Images?  

• Model selection 

     - Which model should we use? How complex should it be? 

• Use of prior knowledge 

     - How do we encode our beliefs? How much can we assume? 



(brief) intro to probability  



Basic notations 

• Random variable 

    - referring to an element / event whose status is unknown: 

      A = “it will rain tomorrow” 

• Domain (usually denoted by ) 

    - The set of values a random variable can take: 

      - “A = The stock market will go up this year”: Binary 

      - “A = Number of Steelers wins in 2012”: Discrete 

      - “A = % change in Google stock in 2012”: Continuous 



Axioms of probability (Kolmogorov’s axioms) 

A variety of useful facts can be derived from just three axioms: 

1. 0 ≤ P(A) ≤ 1 

2. P(true) = 1,  P(false) = 0 

3. P(A  B) = P(A) + P(B) – P(A  B) 

There have been several 

other attempts to provide a 

foundation for probability 

theory. Kolmogorov‟s axioms 

are the most widely used. 



Priors 

P(rain tomorrow) = 0.2 

P(no rain tomorrow) = 0.8 

Rain 

No rain 
Degree of belief 

in an event in the 

absence of any 

other information 



Conditional probability 

• P(A = 1 | B = 1): The fraction of cases where A is true if B is true 

P(A = 0.2) P(A|B = 0.5) 



Conditional probability 

• In some cases, given knowledge of one or 

more random variables we can improve upon 

our prior belief of another random variable 

• For example: 

   p(slept in movie) = 0.5 

    p(slept in movie | liked movie) = 1/4 

    p(didn‟t sleep in movie | liked movie) = 3/4 

Slept Liked 

1 0 

0 1 

1 1 

1 0 

0 0 

1 0 

0 1 

0 1 



Joint distributions 

• The probability that a set of random variables will take a 

specific value is their joint distribution. 

• Notation: P(A  B) or P(A,B) 

• Example:  P(liked movie, slept)   

If we assume independence then 

 

 P(A,B)=P(A)P(B) 

 

However, in many cases such an 

assumption maybe too strong (more 

later in the class) 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(summer) = 0.4 

Evaluation of classes 

P(class size > 20, summer) = ? 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(summer) = 0.4 

P(class size > 20, summer) = 0.1 

Evaluation of classes 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(eval = 1) = 0.3 

P(class size > 20, eval = 1) = 0.3 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Joint distribution (cont) 

P(class size > 20) = 0.6 

P(eval = 1) = 0.3 

P(class size > 20, eval = 1) = 0.3 

Evaluation of classes 

Size Time Eval 

30 R 2 

70 R 1 

12 S 2 

8 S 3 

56 R 1 

24 S 2 

10 S 3 

23 R 3 

9 R 2 

45 R 1 



Chain rule 
• The joint distribution can be specified in terms of conditional probability: 

                P(A,B) = P(A|B)*P(B) 

• Together with Bayes rule (which is actually derived from it) this is one of the most 

powerful rules in probabilistic reasoning  

 



Bayes rule 

• One of the most important rules for this class. 

• Derived from the chain rule: 

     P(A,B) = P(A | B)P(B) = P(B | A)P(A) 

• Thus, 

Thomas Bayes was 

an English 

clergyman who set 

out his theory of 

probability in 1764.  
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Bayes rule (cont) 

Often it would be useful to derive the rule a bit further: 




A

APABP
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This results from: 

P(B) = ∑AP(B,A) 
A 

B 
A 

B 

P(B,A=1) P(B,A=0) 



Density estimation 



Density Estimation 

• A Density Estimator learns a mapping from a set of attributes to a Probability 

Density 
Estimator 

Probability 

Input data for a 
variable or a set of 

variables 



Density estimation 

• Estimate the distribution (or conditional distribution) of a random variable 

• Types of variables: 

    - Binary 

      coin flip, alarm  

     - Discrete 

       dice, car model year  

      - Continuous  

      height, weight, temp.,   



When do we need to estimate densities?  
• Density estimators can do many good things… 

- Can sort the records by probability, and thus spot weird records (anomaly 

detection) 

- Can do inference: P(E1|E2) 

Medical diagnosis / Robot sensors  

- Ingredient for Bayes networks and other types of ML methods 



Density estimation 

• Binary and discrete variables:  

 

 

• Continuous variables: 

 

Easy: Just count! 

Harder (but just a bit): Fit 

a model 



Learning a density estimator for discrete 

variables 



ˆ P (xi  u) 
#records in which xi  u 

total number of records

A trivial learning algorithm! 

But why is this true? 



Maximum Likelihood Principle 

M is our model (usually a 

collection of parameters) 



ˆ P (dataset | M)  ˆ P (x1 x2  xn | M)  ˆ P (xk | M)
k1

n



We can define the likelihood of the data given the model as 

follows: 

For example M is 

- The probability of „head‟ for a coin flip 

-  The probabilities of observing 1,2,3,4 and 5 for a dice 

-  etc.  



Maximum Likelihood Principle 

• Our goal is to determine the values for the parameters in M 

• We can do this by maximizing the probability of generating the observed 

samples 

• For example, let  be the probabilities for a coin flip 

• Then  

                 L(x1, … ,xn | ) = p(x1 | ) … p(xn  | ) 

• The observations (different flips) are assumed to be independent 

• For such a coin flip with P(H)=q the best assignment for h is  

        argmaxq = #H/#samples 

• Why? 

 



ˆ P (dataset | M)  ˆ P (x1 x2  xn | M)  ˆ P (xk | M)
k1

n





• For a binary random variable A with P(A=1)=q 

        argmaxq = #1/#samples 

 

• Why? 

 

Data likelihood: 

 

We would like to find: 

Maximum Likelihood Principle: Binary 

variables 
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Omitting terms that 

do not depend on q 



Data likelihood: 

 

We would like to find: 

Maximum Likelihood Principle 
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Log Probabilities 

When working with products, probabilities of entire datasets often get 

too small. A possible solution is to use the log of probabilities, often 

termed „log likelihood‟ 



log ˆ P (dataset | M)  log ˆ P (xk | M)
k1

n

  log ˆ P (xk | M)
k1

n



Log values 

between 0 and 1 

Maximizing this likelihood function is the 

same as maximizing P(dataset | M) 

In some cases moving to log space would 

also make computation easier (for 

example, removing the exponents) 



Density estimation 

• Binary and discrete variables:  

 

 

• Continuous variables: 

 Easy: Just count! 

Harder (but just a bit): Fit 

a model 

But what if we 

only have very 

few samples? 



How much do grad students sleep? 
• Lets try to estimate the distribution of the time students spend sleeping (outside 

class). 



Possible statistics 

• X  

  Sleep time  

•Mean of X:  

  E{X} 

  7.03 

• Variance of X:  

  Var{X} = E{(X-E{X})^2}  

  3.05 
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Covariance: Sleep vs. GPA 

Sleep / GPA

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

Sleep hours

G
P

A

Sleep / GPA

•Co-Variance of X1, 

X2:  

  Covariance{X1,X2} = 

E{(X1-E{X1})(X2-E{X2})}  

  = 0.88 



Statistical Models 

• Statistical models attempt to characterize properties of the 

population of interest 

 

• For example, we might believe that repeated measurements 

follow a normal (Gaussian) distribution with some mean µ and 

variance 2 , x ~ N(µ,2) 

 

where 

 

 

 

and =(µ,2) defines the parameters (mean and variance) of the 

model.  
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• A statistical model is a 

collection of distributions; the 

parameters specify individual 

distributions x ~ N(µ,2) 

• We need to adjust the 

parameters so that the resulting  

distribution fits the data well 

The Parameters of Our Model 



• A statistical model is a 

collection of distributions; the 

parameters specify individual 

distributions x ~ N(µ,2) 

• We need to adjust the 

parameters so that the resulting  

distribution fits the data well 

The Parameters of Our Model 



Computing the parameters of our model 
• Lets assume a Guassian distribution 

for our sleep data 

• How do we compute the parameters 

of the model? 
Sleep
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Maximum Likelihood Principle 
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• We can fit statistical models by maximizing the probability of 

generating the observed samples: 

L(x1, … ,xn | ) = p(x1 | ) … p(xn  | ) 

(the samples are assumed to be independent) 

 

• In the Gaussian case we simply set the mean and the variance 

to the sample mean and the sample variance: 
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Why? 



Important points 

• Random variables 

• Chain rule 

• Bayes rule 

• Joint distribution, independence, conditional independence 

• MLE 



Probability Density Function 

• Discrete distributions 

 

 

 

 

 

• Continuous: Cumulative Density Function (CDF): F(a) 

1 2 3 4 5 6 

f(x) 

x 
a 



Cumulative Density Functions 

• Total probability 

 

• Probability Density Function (PDF) 

 

• Properties: 

F(x) 



Expectations 

• Mean/Expected Value: 

 

• Variance: 

 

• In general: 



Multivariate 

• Joint for (x,y) 

 

 

• Marginal: 

 

 

• Conditionals: 

 

 

• Chain rule:  



Bayes Rule 

• Standard form: 

 

 

 

• Replacing the bottom: 

 

 



Binomial 

• Distribution: 

 

 

 

 

 

• Mean/Var: 



Uniform 

• Anything is equally likely in the region [a,b] 

 

• Distribution: 

 

 

• Mean/Var 

a b 



Gaussian (Normal) 

• If I look at the height of women in country xx, it will look approximately Gaussian 

• Small random noise errors, look Gaussian/Normal 

 

• Distribution: 

 

 

• Mean/var 



Why Do People Use Gaussians 

• Central Limit Theorem: (loosely) 

- Sum of a large number of IID random variables is approximately Gaussian 



Multivariate Gaussians 

• Distribution for vector x 

 

 

• PDF: 



Multivariate Gaussians 
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Covariance examples 

Anti-correlated 

Covariance: -9.2 

Correlated 

Covariance: 18.33 

Independent (almost) 

Covariance: 0.6 



Sum of Gaussians 

• The sum of two Gaussians is a Gaussian: 


