
Ensemble methods
Boosting from Weak Learners

Eric Xing

Lecture 11, October 15, 2015

Machine Learning

10-701, Fall 2015

b r a c e

Reading: Chap. 14.3 C.B book
1© Eric Xing @ CMU, 2006-2015

 Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic
regression, decision stumps (or shallow decision trees)

Are good  - Low variance, don’t usually overfit
Are bad  - High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!! But often yes…

Weak Learners:
Fighting the bias-variance tradeoff

2© Eric Xing @ CMU, 2006-2015

Why boost weak learners?
Goal: Automatically categorize type of call requested

(Collect, Calling card, Person-to-person, etc.)

 Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

 Hard to find single highly accurate prediction rule.

3© Eric Xing @ CMU, 2006-2015

Voting (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many weak

classifiers that are good at different parts of the input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

1 -1

? ?

? ?

1 -1

H: X → Y (-1,1)
h1(X) h2(X)

H(X) = sign(∑αt ht(X))
t

weights

H(X) = h1(X)+h2(X)

4© Eric Xing @ CMU, 2006-2015

Voting (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the
input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

 But how do you ???
 force classifiers ht to learn about different parts of the input space?
 weigh the votes of different classifiers? t

5© Eric Xing @ CMU, 2006-2015

Bagging
 Recall decision trees (lecture 3)

 Pros: interpretable, can handle discrete and continuous features, robust to
outliers, low bias, etc.

 Cons: high variance

 Trees are perfect candidates for ensembles
 Consider averaging many (nearly) unbiased tree estimators
 Bias remains similar, but variance is reduced

 This is called bagging (bootstrap aggregating) (Breiman, 1996)
 Train many trees on bootstrapped data, then take average

 Bootstrap: statistical term for “roll n-face dice n times”

© Eric Xing @ CMU, 2006-2016 6

Random Forest
 Reduce correlation between trees, by introducing randomness
1. For b = 1, …, B,

1. Draw a bootstrap dataset
2. Learn a tree on , in particular select features randomly out of

features as candidates before splitting

2. Output:
 Regression:
 Classification: majority vote

 Typically take

© Eric Xing @ CMU, 2006-2016 7

Rationale: Combination of
methods
 There is no algorithm that is always the most accurate

 We can select simple “weak” classification or regression
methods and combine them into a single “strong” method

 Different learners use different

 Algorithms
 Parameters
 Representations (Modalities)
 Training sets
 Subproblems

 The problem: how to combine them

8© Eric Xing @ CMU, 2006-2015

Boosting [Schapire’89]
 Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

 On each iteration t:
 weight each training example by how incorrectly it was classified
 Learn a weak hypothesis – ht

 A strength for this hypothesis – t

 Final classifier:

 Practically useful, and theoretically interesting
 Important issues:

 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner

(modularity)

H(X) = sign(∑αt ht(X))

9© Eric Xing @ CMU, 2006-2015

Combination of classifiers
 Suppose we have a family of component classifiers

(generating ±1 labels) such as decision stumps:

where = {k,w,b}

 Each decision stump pays
attention to only a single
component of the
input vector

 bwxxh k  sign);(

10© Eric Xing @ CMU, 2006-2015

Combination of classifiers con’d
 We’d like to combine the simple classifiers additively so that

the final classifier is the sign of

where the “votes” {i} emphasize component classifiers that
make more reliable predictions than others

 Important issues:
 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner

(modularity)

);();()(ˆ mmhhh  xxx  11

11© Eric Xing @ CMU, 2006-2015

AdaBoost
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt ,x) and obtain hypothesis
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht

12© Eric Xing @ CMU, 2006-2015

AdaBoost
 At the kth iteration we find (any) classifier h(x; k*) for which

the weighted classification error:

is better than chance.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:

 kkk εε /)(log.  150

 );(exp kiki
k
i

k
i hayWW x 1








 
n

i

k
i

n

i
kii

k
ik WhyIW

1

1

1

*1);(( x

13© Eric Xing @ CMU, 2006-2015

Boosting Example (Decision
Stumps)

14© Eric Xing @ CMU, 2006-2015

Boosting Example (Decision
Stumps)

15© Eric Xing @ CMU, 2006-2015

 What is the criterion that we are optimizing?
(measure of loss)

16© Eric Xing @ CMU, 2006-2015

Measurement of error
 Loss function:

 Generalization error:

 Objective: find h with minimum generalization error

 Main boosting idea: minimize the empirical error:

 ))((e.g.))(,(xx hyIhy 

 ))(,()(xhyEhL 





N

i
ii hyN

hL
1

1))(,()(ˆ x

17© Eric Xing @ CMU, 2006-2015

Exponential Loss
 Empirical loss:

 Another possible measure of empirical loss is

 



n

i
imihyhL

1
)(ˆexp)(ˆ x





N

i
imi hyN

hL
1

))(ˆ,(1)(ˆ x

18© Eric Xing @ CMU, 2006-2015

Exponential Loss
 One possible measure of empirical loss is

 The combined classifier based on m − 1 iterations defines a weighted loss
criterion for the next simple classifier to add

 each training sample is weighted by its "classifiability" (or difficulty) seen by the
classifier we have built so far

 

 

   

 );(exp

);(exp)(ˆexp

);()(ˆexp

)(ˆexp)(ˆ

mimi

n

i

m
i

mimi

n

i
imi

n

i
mimiimi

n

i
imi

hayW

hayhy

hayhy

hyhL







x

xx

xx

x





























1

1

1
1

1
1

1

Recall that:
);();()(ˆ

mmm hhh  xxx  11

 )(ˆexp imi
m
i hyW x1

1


 

19© Eric Xing @ CMU, 2006-2015

Linearization of loss function
 We can simplify a bit the estimation criterion for the new

component classifiers (assuming  is small)

 Now our empirical loss criterion reduces to

 We could choose a new component classifier to optimize this
weighted agreement

 );();(exp mimimimi hayhay  xx  1

 



























n

i
mii

m
im

n

i

m
i

mimi

n

i

m
i

n

i
imi

hyWaW

hayW

hy

1

1

1

1

1

1

1

1

);(

));((

)(ˆexp





x

x

x

 )(ˆexp imi
m
i hyW x1

1


 

20© Eric Xing @ CMU, 2006-2015

A possible algorithm
 At stage m we find * that maximize (or at least give a

sufficiently high) weighted agreement:

 each sample is weighted by its "difficulty" under the previously combined m − 1
classifiers,

 more "difficult" samples received heavier attention as they dominates the total
loss

 Then we go back and find the “votes” m* associated with the
new classifier by minimizing the original weighted
(exponential) loss





n

i
mii

m
i hyW

1

1);(*x

 );(exp)(ˆ
1

1
mimi

n

i

m
i hayWhL x







21© Eric Xing @ CMU, 2006-2015

The AdaBoost algorithm
 At the kth iteration we find (any) classifier h(x; k*) for which

the weighted classification error:

is better than change.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:








 
n

i

k
i

n

i
kii

k
ik WhyIW

1

1

1

*1);(( x

 kkk εε /)(log.  150

 );(exp kiki
k
i

k
i hayWW x 1

 )(ˆexp imi
m
i hyW x1

1


 

22© Eric Xing @ CMU, 2006-2015

The AdaBoost algorithm cont’d
 The final classifier after m boosting iterations is given by the

sign of

 the votes here are normalized for convenience

m

mmhhh











1

11);();()(ˆ xxx

23© Eric Xing @ CMU, 2006-2015

Boosting
 We have basically derived a Boosting algorithm that

sequentially adds new component classifiers, each trained on
reweighted training examples
 each component classifier is presented with a slightly different problem

 AdaBoost preliminaries:
 we work with normalized weights Wi on the training examples, initially

uniform (Wi = 1/n)
 the weight reflect the "degree of difficulty" of each datum on the latest

classifier

24© Eric Xing @ CMU, 2006-2015

AdaBoost: summary
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht

25© Eric Xing @ CMU, 2006-2015

Base Learners
 Weak learners used in practice:

 Decision stumps (axis parallel splits)
 Decision trees (e.g. C4.5 by Quinlan 1996)
 Multi-layer neural networks
 Radial basis function networks

 Can base learners operate on weighted examples?
 In many cases they can be modified to accept weights along with the

examples
 In general, we can sample the examples (with replacement) according to

the distribution defined by the weights

26© Eric Xing @ CMU, 2006-2015

 Boosting often,
 Robust to overfitting
 Test set error decreases even after training error is zero

[Schapire, 1989]

but not always

Test Error

Training Error

Boosting results – Digit
recognition

27© Eric Xing @ CMU, 2006-2015

 T – number of boosting rounds
 d – VC dimension of weak learner, measures complexity of

classifier
 m – number of training examples

Generalization Error Bounds

T smalllarge small

T largesmall large
tradeoff

bias variance

[Freund & Schapire’95]

28© Eric Xing @ CMU, 2006-2015

Generalization Error Bounds

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
 Robust to overfitting
 Test set error decreases even after training error is zero

Need better analysis tools – margin based bounds

[Freund & Schapire’95]

With high
probability

29© Eric Xing @ CMU, 2006-2015

Why it is working?
 You will need some learning theory (to be covered in the next

two lectures) to understand this fully, but for now let's just go
over some high level ideas

 Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,
Boosting should overfit!

30© Eric Xing @ CMU, 2006-2015

Training
error

Test
error

The Boosting Approach to Machine Learning, by Robert E. Schapire

Experiments

31© Eric Xing @ CMU, 2006-2015

Training Margins
 When a vote is taken, the more predictors agreeing, the more

confident you are in your prediction.

 Margin for example:

The margin lies in [−1, 1] and is negative for all misclassified examples.

 Successive boosting iterations improve the majority vote or
margin for the training examples













m

mimi
iiih

hhy,y







1

11);();()(margin xxx

32© Eric Xing @ CMU, 2006-2015

A Margin Bound

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of voting

methods. The Annals of Statistics, 26(5):1651-1686, 1998.

 For any , the generalization error is less than:

 It does not depend on T!!!

  







 2


m
dO,yh)(marginPr x

33© Eric Xing @ CMU, 2006-2015

Summary
 Boosting takes a weak learner and converts it to a strong
 one

 Works by asymptotically minimizing the empirical error

 Effectively maximizes the margin of the combined hypothesis

34© Eric Xing @ CMU, 2006-2015

Some additional points for fun

© Eric Xing @ CMU, 2006-2015 35

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

iid

Boosting and Logistic
Regression

36© Eric Xing @ CMU, 2006-2015

Logistic regression equivalent to minimizing log loss

Both smooth approximations
of 0/1 loss!

Boosting minimizes similar loss function!!

Weighted average of weak learners

1

0

0/1 loss

exp loss
log loss

Boosting and Logistic
Regression

37© Eric Xing @ CMU, 2006-2015

Logistic regression:
 Minimize log loss

 Define

where xj predefined
features
(linear classifier)

 Jointly optimize over all
weights w0, w1, w2…

Boosting:
 Minimize exp loss

 Define

where ht(x) defined dynamically
to fit data
(not a linear classifier)

 Weights t learned per
iteration t incrementally

Boosting and Logistic
Regression

38© Eric Xing @ CMU, 2006-2015

Weighted average of weak
learners

Hard Decision/Predicted label:

Soft Decision:
(based on analogy with
logistic regression)

Hard & Soft Decision

39© Eric Xing @ CMU, 2006-2015

Good  : Can identify outliers since focuses on examples that are
hard to categorize

Bad  : Too many outliers can degrade classification performance
dramatically increase time to convergence

Effect of Outliers

40© Eric Xing @ CMU, 2006-2015

 Goal: Find nonlinear predictor such that

 Gradient boosting generalizes Adaboost
(exponential loss) to any smooth loss functions

Gradient Boosting

41© Eric Xing @ CMU, 2006-2015

Square loss (regression)

Logistic loss
(classification)
Margin loss
(ranking) (prefer item i over j)
Others…

 Let’s use decision tree to approximate
 A J-leaf node decision tree can be viewed as a

partition of the input space

 and a prediction value (weight) associated with each
partition

 Will learn (tree structure) first, then

Gradient Boosting Decision Tree

42© Eric Xing @ CMU, 2006-2011

