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 Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic 
regression, decision stumps (or shallow decision trees)

Are good  - Low variance, don’t usually overfit
Are bad  - High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!! But often yes…

Weak Learners:
Fighting the bias-variance tradeoff
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Why boost weak learners?
Goal: Automatically categorize type of call requested 

(Collect, Calling card, Person-to-person, etc.)

 Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

 Hard to find single highly accurate prediction rule.
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Voting  (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many weak 

classifiers that are good at different parts of the input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

1 -1

? ?

? ?

1 -1

H: X → Y (-1,1)
h1(X) h2(X)

H(X) = sign(∑αt ht(X))
t

weights

H(X) = h1(X)+h2(X)

4© Eric Xing @ CMU, 2006-2015



Voting  (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the 
input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

 But how do you ??? 
 force classifiers ht to learn about different parts of the input space?
 weigh the votes of different classifiers? t
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Bagging
 Recall decision trees (lecture 3)

 Pros: interpretable, can handle discrete and continuous features, robust to 
outliers, low bias, etc.

 Cons: high variance

 Trees are perfect candidates for ensembles
 Consider averaging many (nearly) unbiased tree estimators
 Bias remains similar, but variance is reduced

 This is called bagging (bootstrap aggregating) (Breiman, 1996)
 Train many trees on bootstrapped data, then take average

 Bootstrap: statistical term for “roll n-face dice n times”
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Random Forest
 Reduce correlation between trees, by introducing randomness
1. For b = 1, …, B,

1. Draw a bootstrap dataset 
2. Learn a tree            on       , in particular select        features randomly out of     

features as candidates before splitting

2. Output:
 Regression:  
 Classification: majority vote

 Typically take 
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Rationale: Combination of 
methods
 There is no algorithm that is always the most accurate

 We can select simple “weak” classification or regression 
methods and combine them into a single “strong” method

 Different learners use different

 Algorithms
 Parameters
 Representations (Modalities)
 Training sets
 Subproblems

 The problem: how to combine them
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Boosting [Schapire’89]
 Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote

 On each iteration t: 
 weight each training example by how incorrectly it was classified 
 Learn a weak hypothesis – ht

 A strength for this hypothesis – t

 Final classifier:

 Practically useful, and theoretically interesting
 Important issues:

 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner 

(modularity)

H(X) = sign(∑αt ht(X))
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Combination of classifiers
 Suppose we have a family of component classifiers 

(generating ±1 labels) such as decision stumps:

where = {k,w,b}

 Each decision stump pays 
attention to only a single 
component of the 
input vector

 bwxxh k  sign);( 
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Combination of classifiers con’d
 We’d like to combine the simple classifiers additively so that 

the final classifier is the sign of

where the “votes” {i} emphasize component classifiers that 
make more reliable predictions than others

 Important issues:
 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner 

(modularity)

);();()(ˆ mmhhh  xxx  11
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AdaBoost
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt ,x) and obtain hypothesis 
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht
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AdaBoost
 At the kth iteration we find (any) classifier h(x; k*) for which 

the weighted classification error:

is better than chance.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component 
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:
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Boosting Example (Decision 
Stumps)
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Boosting Example (Decision 
Stumps)
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 What is the criterion that we are optimizing? 
(measure of loss)
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Measurement of error
 Loss function:

 Generalization error:

 Objective: find h with minimum generalization error

 Main boosting idea: minimize the empirical error:
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Exponential Loss
 Empirical loss:

 Another possible measure of empirical loss is
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Exponential Loss
 One possible measure of empirical loss is

 The combined classifier based on m − 1 iterations defines a weighted loss 
criterion for the next simple classifier to add

 each training sample is weighted by its "classifiability" (or difficulty) seen by the 
classifier we have built so far 
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Linearization of loss function
 We can simplify a bit the estimation criterion for the new 

component classifiers (assuming  is small)

 Now our empirical loss criterion reduces to

 We could choose a new component classifier to optimize this 
weighted agreement
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A possible algorithm
 At stage m we find * that maximize (or at least give a 

sufficiently high) weighted agreement:

 each sample is weighted by its "difficulty" under the previously combined m − 1 
classifiers,

 more "difficult" samples received heavier attention as they dominates the total 
loss

 Then we go back and find the “votes” m* associated with the 
new classifier by minimizing the original weighted 
(exponential) loss





n

i
mii

m
i hyW

1

1 );( *x

 );(exp)(ˆ
1

1
mimi

n

i

m
i hayWhL x







21© Eric Xing @ CMU, 2006-2015



The AdaBoost algorithm
 At the kth iteration we find (any) classifier h(x; k*) for which 

the weighted classification error:

is better than change.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component 
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:
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The AdaBoost algorithm cont’d
 The final classifier after m boosting iterations is given by the 

sign of

 the votes here are normalized for convenience

m
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Boosting
 We have basically derived a Boosting algorithm that 

sequentially adds new component classifiers, each trained on 
reweighted training examples
 each component classifier is presented with a slightly different problem

 AdaBoost preliminaries:
 we work with normalized weights Wi on the training examples, initially 

uniform ( Wi = 1/n)
 the weight reflect the "degree of difficulty" of each datum on the latest 

classifier 
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AdaBoost: summary
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis 
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht
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Base Learners
 Weak learners used in practice:

 Decision stumps (axis parallel splits)
 Decision trees (e.g. C4.5 by Quinlan 1996)
 Multi-layer neural networks
 Radial basis function networks

 Can base learners operate on weighted examples?
 In many cases they can be modified to accept weights along with the 

examples
 In general, we can sample the examples (with replacement) according to 

the distribution defined by the weights
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 Boosting often, 
 Robust to overfitting
 Test set error decreases even after training error is zero

[Schapire, 1989]

but not always

Test Error

Training Error

Boosting results – Digit 
recognition
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 T – number of boosting rounds
 d – VC dimension of weak learner, measures complexity of 

classifier 
 m – number of training examples

Generalization Error Bounds

T smalllarge small

T largesmall large
tradeoff

bias variance

[Freund & Schapire’95]
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Generalization Error Bounds

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
 Robust to overfitting
 Test set error decreases even after training error is zero

Need better analysis tools – margin based bounds

[Freund & Schapire’95]

With high
probability
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Why it is working?
 You will need some learning theory (to be covered in the next 

two lectures) to understand this fully, but for now let's just go 
over some high level ideas

 Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,  
Boosting should overfit!
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Training
error

Test
error

The Boosting Approach to Machine Learning, by Robert E. Schapire

Experiments
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Training Margins
 When a vote is taken, the more predictors agreeing, the more 

confident you are in your prediction.

 Margin for example:

The margin lies in [−1, 1] and is negative for all misclassified examples.

 Successive boosting iterations improve the majority vote or 
margin for the training examples
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A Margin Bound

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. 
Boosting the margin: A new explanation for the effectiveness of voting 

methods.  The Annals of Statistics, 26(5):1651-1686, 1998. 

 For any , the generalization error is less than:

 It does not depend on T!!!
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Summary
 Boosting takes a weak learner and converts it to a strong
 one

 Works by asymptotically minimizing the empirical error

 Effectively maximizes the margin of the combined hypothesis
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Some additional points for fun
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Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

iid

Boosting and Logistic 
Regression
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Logistic regression equivalent to minimizing log loss

Both smooth approximations 
of 0/1 loss!

Boosting minimizes similar loss function!!

Weighted average of weak learners

1

0

0/1 loss

exp loss
log loss

Boosting and Logistic 
Regression
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Logistic regression:
 Minimize log loss

 Define 

where xj predefined 
features
(linear classifier)

 Jointly optimize over all 
weights w0, w1, w2…

Boosting:
 Minimize exp loss

 Define 

where ht(x) defined dynamically 
to fit data
(not a linear classifier)

 Weights t learned per 
iteration t incrementally

Boosting and Logistic 
Regression
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Weighted average of weak 
learners

Hard Decision/Predicted label:

Soft Decision:
(based on analogy with
logistic regression)

Hard & Soft Decision
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Good  : Can identify outliers since focuses on examples that are 
hard to categorize

Bad  : Too many outliers can degrade classification performance
dramatically increase time to convergence

Effect of Outliers
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 Goal: Find nonlinear predictor                such that 

 Gradient boosting generalizes Adaboost
(exponential loss) to any smooth loss functions

Gradient Boosting
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Square loss (regression)

Logistic loss 
(classification)
Margin loss 
(ranking) (prefer item i over j)
Others…



 Let’s use decision tree to approximate 
 A J-leaf node decision tree can be viewed as a 

partition of the input space

 and a prediction value (weight) associated with each 
partition

 Will learn       (tree structure) first, then  

Gradient Boosting Decision Tree
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