Machine Learning

10-701, Fall 2015

Ensemble methods

Boosting from Weak Learners

Reading: Chap. 14.3 C.B book
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Weak Learners:
Fighting the bias-variance tradeoff

e Simple (a.k.a. weak) learners e.g., naive Bayes, logistic
regression, decision stumps (or shallow decision trees)

/A
Voo d

Are good © - Low variance, don’t usually overfit
Are bad ® - High bias, can’t solve hard learning problems

e Can we make weak learners always good???
e No!ll But often yes...
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Why boost weak learners?

Goal: Automatically categorize type of call requested
(Collect, Calling card, Person-to-person, etc.)

yes I’d like to place a collect call long
distance please (Collect)

operator I need to make a call but I need to
bill it to my office (ThirdNumber)

yes I1’d like to place a call on my master card
please (CallingCard)

e Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

e Hard to find single highly accurate prediction rule.
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Voting (Ensemble Methods) o

e Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

e Output class: (Weighted) vote of each classifier
e Classifiers that are most “sure” will vote with more conviction
e Classifiers will be most “sure” about a particular part of the space
e On average, do better than single classifier!

H: X = Y (-1,1)

h1(X) h2(X)
H(X) = h1(X)+h2(X)

H(X) = sign(> at ht(X))
t

? ? l
? ? weights
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Voting (Ensemble Methods) o

e Instead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the
input space

e Output class: (Weighted) vote of each classifier
e Classifiers that are most “sure” will vote with more conviction
e Classifiers will be most “sure” about a particular part of the space
e On average, do better than single classifier!

e But how do you ???
e force classifiers h, to learn about different parts of the input space?
e weigh the votes of different classifiers? o,

© Eric Xing @ CMU, 2006-2015 5



Bagging .

e Recall decision trees (lecture 3)

e Pros: interpretable, can handle discrete and continuous features, robust to
outliers, low bias, etc.

e Cons: high variance

e Trees are perfect candidates for ensembles

e Consider averaging many (nearly) unbiased tree estimators
e Bias remains similar, but variance is reduced

e This is called bagging (bootstrap aggregating) (Breiman, 1996)

e Train many trees on bootstrapped data, then take average

fla)= 5 fi@
b=1

e Bootstrap: statistical term for “roll n-face dice n times”
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Random Forest °

e Reduce correlation between trees, by introducing randomness
1. Forb=1, ..., B,

1. Draw a bootstrap dataset A

2. Learn a tree fb() on /™, in particular select 1711 features randomly out of P
features as candidates before splitting

2. Output: | B
e Regression: f(x) — B Zb:l fb(x)

e Classification: majority vote

o Typically take m < /p
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Rationale: Combination of 1
methods oo

e There is no algorithm that is always the most accurate

e We can select simple “weak” classification or regression
methods and combine them into a single “strong” method

e Different learners use different

Algorithms

Parameters

Representations (Modalities)
Training sets

Subproblems

e The problem: how to combine them
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Boosting [Schapire’89] .o
e Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

e On each iteration t:
e weight each training example by how incorrectly it was classified
e Learn a weak hypothesis — h,
e A strength for this hypothesis — o,

e Final classifier:

H(X) = sign(> at ht(X))

e Practically useful, and theoretically interesting
e Important issues:

e what is the criterion that we are optimizing? (measure of loss)

e we would like to estimate each new component classifier in the same manner
(modularity)
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Combination of classifiers 5

e Suppose we have a family of component classifiers
(generating £1 labels) such as decision stumps:

h(x;0) =sign(wx, +b)

where 6= {k,w,b}

e Each decision stump pays
attention to only a single

component of the
iInput vector
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Combination of classifiers con’d :

e We'd like to combine the simple classifiers additively so that
the final classifier is the sign of

h(x) = ah(x;0,) +...+a h(x;0.)

where the “votes” {«;} emphasize component classifiers that
make more reliable predictions than others

e |mportant issues:

e what is the criterion that we are optimizing? (measure of loss)

e we would like to estimate each new component classifier in the same manner
(modularity)
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AdaBoost oo

e Input:
e N examples Sy = {(X;,Y1),---,» XnoYn)}
e aweak base learner h = h(x,0

e Initialize: equal example weights w. = 1/N for all i = 1..N

e Iterate fort=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h,=h(x,6)

2. compute hypothesis error &
3. compute hypothesis weight «;
4. update example weights for next iteration w,,

e Output: final hypothesis as a linear combination of h,
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AdaBoost ot

e At the £th iteration we find (any) classifier /(x; 6,*) for which
the weighted classification error:

E= Y Wy, #h(x:6) | S
=1

i=1

IS better than chance.
e This is meant to be "easy" --- weak classifier

e Determine how many “votes” to assign to the new component

classifier:
a, =05log((1-¢,)/¢,)

e stronger classifier gets more votes

e Update the weights on the training examples:
Wl =W expl-y,a,h(x,:6,)}
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Boosting Example (Decision sect
Stumps) oo
¥ -
T+ + 4 +
+ - + +
+ + - + -
P +
P @ T + ©
+ | — + © e, ®
+ + - ® -
~ S
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Boosting Example (Decision

Stumps)
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e \What is the criterion that we are optimizing?
(measure of loss)
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Measurement of error -

e Loss function:
Ay, h(x)) (e.g.1(y # h(x)))
e (Generalization error:
L(h) = E[2(y,h(x))]

e Obijective: find h with minimum generalization error

e Main boosting idea: minimize the empirical error:
. 1 &
L(h) = ﬁzl(y,-,h(xi))
i=1
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Exponential Loss

e Empirical loss:

a@z%ZM@JMx»

e Another possible measure of empirical loss is

L(h) = an: exXp {_ vih, (Xz')}
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0000
0000
- 1
Exponential Loss o
e One possible measure of empirical loss is
A n A Recall that:
L(h)= le eXP{_ Vil (Xz')} h (X)=ah(x:0)+...+a h(x;0, )

= ZeXp{— Vil (%)= yl-amh(xi;é’m)}
i=1

= GXP{_ yi};m—1 (Xz‘)}eXp{_ y,a,,h(x;;0, )}

i=1

Wl exp{ yl_amh(xi;é’m)} VVim_l — exp{— yiﬁm—l(xi)}

i=1

e The combined classifier based on m — 1 iterations defines a weighted loss
criterion for the next simple classifier to add

e each training sample is weighted by its "classifiability" (or difficulty) seen by the
classifier we have built so far
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Linearization of loss function :

e We can simplify a bit the estimation criterion for the new
component classifiers (assuming « is small)

expi—v.a h(x;;0 ) ~1-ya h(x,;0,)
e Now our empirical loss criterion reduces to

n

Z GXp{— yi};m (Xz)}

i=1

LS W a6
i=1

n n W = expl v, 1 (X))
= Z VVZ.m_1 —-a, Z VVim_lyih(Xz’ 0,.)
i=1 i=1

e We could choose a new component classifier to optimize this
weighted agreement

© Eric Xing @ CMU, 2006-2015 20



A possible algorithm -

e At stage m we find & that maximize (or at least give a
sufficiently high) weighted agreement:

> Wy h(x;50,)
i=1

e each sample is weighted by its "difficulty" under the previously combined m — 1
classifiers,

e more "difficult" samples received heavier attention as they dominates the total
loss

e Then we go back and find the “votes” ¢, * associated with the
new classifier by minimizing the original weighted

(exponential) loss  L(n)=>w"" exp{- ya,h(x;;0,)}
i=1

1 —
= Odtz%hl( Et)

€t
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The AdaBoost algorithm [ —c [0/ x|

l

—

e At the £th iteration we find (any) classifier A(x; 6,*) for which
the weighted classification error:

g =) Wy, #h(x;30,) ) Y W/
i=1

i=1

IS better than change.
e This is meant to be "easy" --- weak classifier

e Determine how many “votes” to assign to the new component

classifier:
a, =0.5log((l-¢,)/¢,)

e stronger classifier gets more votes

e Update the weights on the training examples:
W =W expleyah(x;:6,)}
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The AdaBoost algorithm cont’d 4+

e The final classifier after m boosting iterations is given by the
sign of

o h(x;0)+...+a, h(x;0, )
o +...+a,

h(x) =

e the votes here are normalized for convenience
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Boosting -

e \We have basically derived a Boosting algorithm that
sequentially adds new component classifiers, each trained on
reweighted training examples

e each component classifier is presented with a slightly different problem

e AdaBoost preliminaries:

e we work with normalized weights ¥, on the training examples, initially
uniform ( W, = 1/n)

e the weight reflect the "degree of difficulty" of each datum on the latest
classifier
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AdaBoost: summary -

e Input:
e N examples Sy = {(X,Y1):---» XnYn)}
e aweak base learner h = h(x,0

e Initialize: equal example weights w. = 1/N for all i = 1..N

e Iterate fort=1...T:

1. train base learner according to weighted example set (w,,X) and obtain hypothesis
h,=h(x,6)

2. compute hypothesis error &
3. compute hypothesis weight
4. update example weights for next iteration w,,

e Output: final hypothesis as a linear combination of h,

© Eric Xing @ CMU, 2006-2015 25



Base Learners °

e \Weak learners used in practice:

Decision stumps (axis parallel splits)
Decision trees (e.g. C4.5 by Quinlan 1996)
Multi-layer neural networks

Radial basis function networks

e Can base learners operate on weighted examples?

In many cases they can be modified to accept weights along with the
examples

In general, we can sample the examples (with replacement) according to

the distribution defined by the weights

© Eric Xing @ CMU, 2006-2015
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Boosting results — Digit i
recognition 'Schapire, 1989] | *

Test Error

Training Error
10 100 1000

# rounds
e Boosting often, but not always

e Robust to overfitting
e Test set error decreases even after training error is zero

© Eric Xing @ CMU, 2006-2015
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0000
T
Generalization Error Bounds o
[Freund & Schapire’95]
erroriue(H) < errorirqin(H) + O ( %1)
bias variance
large small T small
I tradeoff
small large T large

e T — number of boosting rounds

e d - VC dimension of weak learner, measures complexity of
classifier

e m — number of training examples
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Generalization Error Bounds °°

[Freund & Schapire’95]

~ Td With high
erroriue(H) < erroryqin(H) + O ( E) - r'oba;ﬁity

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
e Robust to overfitting
e Test set error decreases even after training error is zero

Need better analysis tools — margin based bounds
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Why it is working? -

e You will need some learning theory (to be covered in the next
two lectures) to understand this fully, but for now let's just go
over some high level ideas

e (Generalization Error:

With high probability, Generalization error is less than:

Td

Pr[H(z) #y] + O ( —)

m

As T goes up, our bound becomes worse,
Boosting should overfit!
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Experiments oo
Test
error\

/

Training
error

10

100
# rounds

1000

The Boosting Approach to Machine Learning, by Robert E. Schapire
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Training Margins -

e \When a vote is taken, the more predictors agreeing, the more
confident you are in your prediction.

e Margin for example:

ah(X;0)+...+a, h(x;0 )
a+...+a,

marginh (Xi’yi) =V

The margin lies in [-1, 1] and is negative for all misclassified examples.

e Successive boosting iterations improve the majority vote or
margin for the training examples
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A Margin Bound

e For any y the generalization error is less than:

Pr(margin (X)) < 7/)+ O

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of voting
methods. The Annals of Statistics, 26(5):1651-1686, 1998.

e |t does not depend on 7!
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Summary os

e Boosting takes a weak learner and converts it to a strong
® Onhe

e Works by asymptotically minimizing the empirical error

e Effectively maximizes the margin of the combined hypothesis
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Some additional points for fun
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Boosting and Logistic T
Regression .o
Logistic regression assumes:
1
P(Y =1|X) = flz) =wo + ) wjz;
( X =5 + exp(f(z)) Za:
And tries to maximize data likelihood:
iid m
PO = ] :

Equivalent to minimizing log loss

—log P(D|f) = > In(1 + exp(—y;f(x;)))
i=1

© Eric Xing @ CMU, 2006-2015
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Boosting and Logistic T
Regression oo

Logistic regression equivalent to minimizing log loss
m

7

IN(1 4 exp(—y;f(x;))) f(z) = wo -l-zwjfl?j

1

Boosting minimizes similar loss function!!

=Y exp(-uif o) = [ % f(@) = athi(x)
i=1 t ;

Weighted average of weak learners

exp loss Both smooth approximations

=1
Ji of 0/1 loss!

0/1 loss
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- - - 000
Boosting and Logistic i
Regression .o

Logistic regression: Boosting:
e Minimize log loss e Minimize exp loss
3 In(1 4+ exp(—y; f(x4))) > exp(—yif(x))
=1 1=1
e Define e Define
flx) =) wjz; fx) =) athi(x)
7 t
where x; predefined where £,(x) defined dynamically
features to fit data
(linear classifier) (not a linear classifier)
e Jointly optimize over all e Weights o, learned per

weights wo, w1, wa... . .iferation tincrementally



Hard & Soft Decision

Weighted average of weak
learners

flz) =) athi(z)
t

Hard Decision/Predicted label: H(z) = sign(f(x))

Soft Decision: 1

(based on analogy with P(Y =1|X) =
logistic regression) 1+ exp(f(z))

© Eric Xing @ CMU, 2006-2015
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Effect of Outliers

Good © : Can identify outliers since focuses on examples that are
hard to categorize

Bad ® : Too many outliers can degrade classification performance
dramatically increase time to convergence
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Gradient Boosting -

e Goal: Find nonlinear predictor A(z) € H such that

.

h = arg min L(h(X),Y)

e Gradient boosting generalizes Adaboost
(exponential loss) to any smooth loss functions L(-, )

Square loss (regression) £(r(X),Y) = zn:(h(xz.) — ;)2

=1

Logistic loss L(h(X),Y) = Z In(1 4 e Hx)w)
(classification) i—1

Margin loss LWX),Y)= Y max(0,1— (h(x;) — h(xs)))?
(ranking) ) G,n =1 (prefer item i over j)

Others...
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Gradient Boosting Decision Tree

e Let’'s use decision tree to approximate Jk—1

e A J-leaf node decision tree can be viewed as a
partition of the input space

q:R*—={1,2,....J}

e and a prediction value (weight) associated with each
partition

w e RY

e Willlearn { (tree structure) first, then
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