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VC Dimension and Model 
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Eric Xing
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Reading: Chap. 7 T.M book, and outline material
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Last time: PAC and Agnostic 
Learning
 Finite H, assume target function c ∈ H

 Suppose we want this to be at most δ. Then m examples suffice:

 Finite H, agnostic learning: perhaps c not in H

 

 with probability at least (1-δ) every h in H satisfies
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What if H is not finite?
 Can’t use our result for infinite H

 Need some other measure of complexity for H
– Vapnik-Chervonenkis (VC) dimension!
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What if H is not finite?
 Some Informal Derivation

 Suppose we have an H that is parameterized by d real numbers. Since we are 
using a computer to represent real numbers, and IEEE double-precision floating 
point (double's in C) uses 64 bits to represent a floating point number, this means 
that our learning algorithm, assuming we're using double-precision floating point, 
is parameterized by 64d bits

 Parameterization 
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How do we characterize 
“power”?
 Different machines have different amounts of “power”.
 Tradeoff between:

 More power: Can model more complex classifiers but might overfit.
 Less power: Not going to overfit, but restricted in what it can model 

 How do we characterize the amount of power?
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Shattering a Set of Instances
 Definition: Given a set S = {x(1), … , x(m)} (no relation to the 

training set) of points x(i) X, we say that H shatters S if H
can realize any labeling on S.

I.e., if for any set of labels {y(1), … , y(d)}, there exists some 
hH so that h(x(i)) = y(i) for all i = 1, …, m.

 There are 2m different ways to separate the sample into two 
sub-samples (a dichotomy)
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Instance space  X

Three Instances Shattered
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The Vapnik-Chervonenkis 
Dimension
 Definition: The Vapnik-Chervonenkis dimension, VC(H), of 

hypothesis space H defined over instance space X is the size 
of the largest finite subset of X shattered by H . If arbitrarily 
large finite sets of X can be shattered by H , then VC(H)  .
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VC dimension: examples
Consider X = R, want to learn c: X{0,1}

What is VC dimension of

 Open intervals:
H1: if x>a, then y=1 else y=0

 Closed intervals:

H2: if a<x<b, then y=1 else y=0
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VC dimension: examples
Consider X = R2, want to learn c: X{0,1}

 What is VC dimension of lines in a plane?
H= { ( (wx+b)>0  y=1) }
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 For any of the eight possible labelings of these points, we can find a linear 
classier that obtains "zero training error" on them.

 Moreover, it is possible to show that there is no set of 4 points that this 
hypothesis class can shatter.
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 The VC dimension of H here is 3 even though there may be sets of size 3 that it 
cannot shatter.

 under the definition of the VC dimension, in order to prove that VC(H) is at least 
d, we need to show only that there's at least one set of size d that H can shatter.
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 Theorem Consider some set of m points in Rn. Choose any 
one of the points as origin. Then the m points can be 
shattered by oriented hyperplanes if and only if the position 
vectors of the remaining points are linearly independent.

 Corollary: The VC dimension of the set of oriented 
hyperplanes in Rn is n+1. 
Proof: we can always choose n + 1 points, and then choose one of the 
points as origin, such that the position vectors of the remaining n points are 
linearly independent, but can never choose n + 2 such points (since no n + 
1 vectors in Rn can be linearly independent).
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The VC Dimension and the 
Number of Parameters
 The VC dimension thus gives concreteness to the notion of 

the capacity of a given set of h. 
 Is it true that learning machines with many parameters would 

have high VC dimension, while learning machines with few 
parameters would have low VC dimension?

An infinite-VC function with just one parameter!

where  is an indicator function
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An infinite-VC function with just 
one parameter
 You choose some number l, and present me with the task of finding l 

points that can be shattered. I choose them to be

 You specify any labels you like:

 Then () gives this labeling if I choose  to be

 Thus the VC dimension of this machine is infinite.
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 How many randomly drawn examples suffice to -exhaust 
VSH,S with probability at least (1 - )?

ie., to guarantee that any hypothesis that perfectly fits the training data is 
probably (1-δ) approximately (ε) correct on testing data from the same 
distribution

Compare to our earlier results based on |H|:

))/(log)()/(log(  13824 22
1 HVCm 

Sample Complexity from VC 
Dimension

))/ln((ln 


122
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Mistake Bounds
So far: how many examples needed to learn? 
What about: how many mistakes before convergence?

Let's consider similar setting to PAC learning:
 Instances drawn at random from X according to distribution D
 Learner must classify each instance before receiving correct 

classification from teacher
 Can we bound the number of mistakes learner makes before 

converging?
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 A model computes a function: 

 Problem : minimize in w Risk Expectation

 w : a parameter that specifies the chosen model
 z = (X, y) are possible values for attributes (variables)
 Q measures (quantifies) model error cost
 P(z) is the underlying probability law (unknown) for data z

Statistical Learning Problem
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Statistical Learning Problem (2)
 We get m data from learning sample (z1, .. , zm), and we suppose 

them iid sampled from law P(z). 
 To minimize R(w), we start by minimizing Empirical Risk over this 

sample :

 We shall use such an approach for :
 classification (eg. Q can be a cost function based on cost for misclassified points)
 regression (eg. Q can be a cost of least squares type)
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 Central problem for Statistical Learning Theory:

What is the relation 
between Risk Expectation R(W)
and Empirical Risk E(W)?

 How to define and measure a generalization capacity 
(“robustness”) for a model ? 

Statistical Learning Problem (3)
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Four Pillars for SLT
 Consistency (guarantees generalization)

 Under what conditions will a model be consistent ?

 Model convergence speed (a measure for generalization)
 How does generalization capacity improve when sample size L grows?

 Generalization capacity control
 How to control in an efficient way model generalization starting with the only given 

information we have: our sample data? 

 A strategy for good learning algorithms
 Is there a strategy that guarantees, measures and controls our learning model 

generalization capacity ? 
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Consistency

A learning process (model) is said to be consistent if 
model error, measured on new data sampled from 
the same underlying probability laws of our original 
sample, converges, when original sample size 
increases, towards model error, measured on 
original sample.



© Eric Xing @ CMU, 2006-2015 23

%error

number of training examples

Test error

Training error

%error

number of training examples

Test error

Training error

Consistent training?
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 Q : Under which conditions will a learning model be 
consistent?

 A : A model will be consistent if and only if the function h that 
defines the model comes from a family of functions H with 
finite VC dimension d

 A finite VC dimension d not only guarantees a generalization 
capacity (consistency), but to pick h in a family H with finite 
VC dimension d is the only way to build a model that 
generalizes.

Vapnik main theorem
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Model convergence speed 
(generalization capacity)
 Q : What is the nature of model error difference between 

learning data (sample) and test data, for a sample of finite 
size m? 

 A : This difference is no greater than a limit that only depends 
on the ratio between VC dimension d of model functions 
family H, and sample size m, i.e., d/m

This statement is a new theorem that belongs to Kolmogorov-
Smirnov way for results, i.e., theorems that do not depend on 
data’s underlying probability law.



© Eric Xing @ CMU, 2006-2015 26

Agnostic Learning: VC Bounds
 Theorem: Let H be given, and let d = VC(H). Then with 

probability at least 1- , we have that for all h  H,

or

recall that in finite H case, we have:
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Sample size m

Confidence
Interval

Test data error

Learning sample error

% error

Model convergence speed
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How to control model 
generalization capacity

Risk Expectation = Empirical Risk + Confidence Interval

 To minimize Empirical Risk alone will not always give a good 
generalization capacity: one will want to minimize the sum of 
Empirical Risk and Confidence Interval

 What is important is not the numerical value of the Vapnik 
limit, most often too large to be of any practical use, it is the 
fact that this limit is a non decreasing function of model family 
function “richness”



© Eric Xing @ CMU, 2006-2015 29

 With probability 1-, the following inequality is true:

 where w0 is the parameter w value that minimizes Empirical Risk:

Empirical Risk Minimization 
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Minimizing The Bound by 
Minimizing d
 Given some selection of learning machines whose empirical risk is 

zero, one wants to choose that learning machine whose associated 
set of functions has minimal VC dimension.

 By doing this we can attain an upper bound on the actual risk. This does not prevent a 
particular machine with the same value for empirical risk, and whose function set has 
higher VC dimension, from having better performance.

 What is the VC of a kNN?
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Structural Risk Minimization
 Which hypothesis space should we choose?

 Bias / variance tradeoff

 SRM: choose H to minimize bound on true error!

unfortunately a somewhat loose bound...
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SRM strategy (1)
 With probability 1-,

 When m/d is small (d too large), second term of equation becomes 
large

 SRM basic idea for strategy is to minimize simultaneously both 
terms standing on the right of above majoring equation for (h)

 To do this, one has to make d a controlled parameter
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SRM strategy (2)
 Let us consider a sequence H1 < H2 < .. < Hn of model family 

functions, with respective growing VC dimensions 
d1 < d2 < .. < dn

 For each family Hi of our sequence, the inequality

is valid
 That is, for each subset, we must be able either to compute d, or to get a bound 

on d itself.

 SRM then consists of finding that subset of functions which 
minimizes the bound on the actual risk.
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SRM : find i such that expected risk (h) becomes 
minimum, for a specific d*=di, relating to a specific 
family Hi of our sequence; build model using h from Hi

Empirical 
Risk

Risk

Model Complexity

Total Risk

Confidence interval
In h/L

Best Model

h*

SRM strategy (3)
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Putting SRM into action: 
linear models case (1)
 There are many SRM-based strategies to build models:

 In the case of linear models
y = <w|x> + b,

one wants to make ||w|| a controlled parameter: let us call HC the 
linear model function family satisfying the constraint:

||w|| < C

Vapnik Major theorem:
When C decreases, d(HC) decreases
||x|| < R
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Putting SRM into action: 
linear models case (2)
 To control ||w||, one can envision two routes to model:

 Regularization/Ridge Regression, ie min. over w and b

RG(w,b) = S{(yi-<w|xi> - b)² |i=1,..,L} +  ||w||²

 Support Vector Machines (SVM), ie solve directly an optimization 
problem (classif. SVM, separable data)

Minimize ||w||², 
with (yi= +/-1)
and yi(<w|xi> + b) >=1 for all i=1,..,L
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The VC Dimension of SVMs
 An SVM finds a linear separator in a Hilbert space, where the 

original date x can be mapped to via a transformation (x). 

 Recall that the kernel trick used by SVM alleviates the need to 
find explicit expression of  (.) to compute the transformation

(  )
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Feature spaceInput space
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The Kernel Trick
 Recall the SVM optimization problem

 The data points only appear as inner product
 As long as we can calculate the inner product in the feature 

space, we do not need the mapping explicitly
 Define the kernel function K by
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Mercer’s Condition 
 For which kernels does there exist a pair {H;(.)} with the 

valid geometric properties (e.g., nonnegative dot-product) for 
a transformation satisfied, and for which does there not?

 Mercer’s Condition for Kernels
 There exists a mapping (.) and an expansion

iff for any g(x) such that

then



© Eric Xing @ CMU, 2006-2015 40

The VC Dimension of SVMs
 We will call any kernel that satisfies Mercer’s condition a 

positive kernel, and the corresponding space H the 
embedding space.

 We will also call any embedding space with minimal 
dimension for a given kernel a “minimal embedding space”.

 Theorem: Let K be a positive kernel which corresponds to a 
minimal embedding space H. Then the VC dimension of the 
corresponding support vector machine (where the error 
penalty C is allowed to take all values) is dim(H) + 1
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VC and the Actual Risk

 It is striking that the two curves have minima in the same 
place: thus in this case, the VC bound, although loose, seems 
to be nevertheless predictive.
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What You Should Know
 Sample complexity varies with the learning setting

 Learner actively queries trainer
 Examples provided at random

 Within the PAC learning setting, we can bound the probability that 
learner will output hypothesis with given error
 For ANY consistent learner (case where c in H)
 For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

 VC dimension as measure of complexity of H
 Quantitative bounds characterizing bias/variance in choice of H

 but the bounds are quite loose...

 Mistake bounds in learning
 Conference on Learning Theory: http://www.learningtheory.org


