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We are inundated with data …

 Humans cannot afford to deal with (e.g., search, browse, or 
measure similarity) a huge number of text and media documents

 We need computers to help out …

(from images.google.cn)
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A task:
 Say, we want to have a mapping …, so that 

 Compare similarity 
 Classify contents
 Cluster/group/categorize docs
 Distill semantics and perspectives 
 .. 


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Representation:
 Data:

 Each document is a vector in the word space
 Ignore the order of words in a document. Only count matters!

 A high-dimensional and sparse representation
– Not efficient text processing tasks, e.g., search, document 

classification, or similarity measure
– Not effective for browsing

As for the Arabian and Palestinean voices that are against the 
current negotiations and the so-called peace process, they are not 
against peace per se, but rather for their well-founded 
predictions that Israel would NOT give an inch of the West bank 
(and most probably the same for Golan Heights) back to the 
Arabs. An 18 months of "negotiations" in Madrid, and 
Washington proved these predictions. Now many will jump on 
me saying why are you blaming israelis for no-result negotiations. 
I would say why would the Arabs stall the negotiations, what do 
they have to loose ?

Arabian

negotiations
against

peace
Israel

Arabs blaming

Bag of Words Representation
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Subspace analysis

 Clustering: (0,1) matrix
 LSI/NMF: “arbitrary” matrices
 Topic Models: stochastic matrix
 Sparse coding:  “arbitrary” sparse matrices
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An example:
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Principal Component Analysis
 The new variables/dimensions

 Are linear combinations of the original 
ones

 Are uncorrelated with one another
 Orthogonal in original dimension space

 Capture as much of the original 
variance in the data as possible

 Are called Principal Components

 Orthogonal directions of 
greatest variance in data

 Projections along PC1 
discriminate the data most 
along any one axis

 First principal component is the direction of 
greatest variability (covariance) in the data

 Second is the next orthogonal (uncorrelated) 
direction of greatest variability
 So first remove all the variability along the first component, and then 

find the next direction of greatest variability

 And so on …

Original Variable A
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Computing the Components
 Projection of vector x onto an axis (dimension) u is uTx
 Direction of greatest variability is that in which the average square of 

the projection is greatest:

Maximize uTXXTu 
s.t uTu = 1 

Construct Langrangian  uTXXTu – λuTu 

Vector of partial derivatives set to zero

xxTu – λu = (xxT – λI) u = 0
As u ≠ 0 then u must be an eigenvector of XXT with eigenvalue  λ

  is the principal eigenvalue of the correlation matrix C= XXT 

 The eigenvalue denotes the amount of variability captured along that 
dimension
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Computing the Components
 Similarly for the next axis, etc. 
 So, the new axes are the eigenvectors of the matrix of 

correlations of the original variables, which captures the 
similarities of the original variables based on how data 
samples project to them

 Geometrically: centering followed by rotation
 Linear transformation
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 For symmetric matrices, eigenvectors for distinct eigenvalues 
are orthogonal

 All eigenvalues of a real symmetric matrix are real.

 All eigenvalues of a positive semidefinite matrix are non-
negative

  TSS and 0 if IS

0vSv if then ,0,  Swww Tn

02121212121  vvvSv   and ,},{},{},{

Eigenvalues & Eigenvectors
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 Let                      be a square matrix with m linearly 
independent eigenvectors (a “non-defective” matrix)

 Theorem: Exists an eigen decomposition

(cf. matrix diagonalization theorem)

 Columns of U are eigenvectors of S

 Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Unique 
for 

distinc
t eigen-
values
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PCs, Variance and Least-Squares
 The first PC retains the greatest amount of variation in the 

sample

 The kth PC retains the kth greatest fraction of the variation in 
the sample

 The kth largest eigenvalue of the correlation matrix C is the 
variance in the sample along the kth PC

 The least-squares view: PCs are a series of linear least 
squares fits to a sample, each orthogonal to all previous ones 
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Doc 1 Doc 2 Doc 3 ...

Word 1 3 0 0 ...

Word 2 0 8 1 ...

Word 3 0 1 3 ...

Word 4 2 0 0 ...

Word 5 12 0 0 ...

... 0 0 0 ...

X =

The Corpora Matrix 
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Singular Value Decomposition

TVUA 

mm mn V is nn

For an m n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii  

 rdiag  ...1 Singular values.

Eigenvalues 1 … r of AAT are the eigenvalues of ATA.
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SVD and PCA
 The first root is called the prinicipal eigenvalue which has an 

associated orthonormal (uTu = 1) eigenvector u 

 Subsequent roots are ordered such that λ1> λ2  >… > λM  with 
rank(D) non-zero values.

 Eigenvectors form an orthonormal basis i.e. ui
Tuj = δij 

 The eigenvalue decomposition of XXT = UΣUT

 where U = [u1, u2, …, uM] and Σ = diag[λ 1, λ 2, …, λ M] 

 Similarly the eigenvalue decomposition of XTX = VΣVT

 The SVD is closely related to the above X=U Σ1/2 VT

 The left eigenvectors U, right eigenvectors V, 

 singular values = square root of eigenvalues.
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How Many PCs?
 For n original dimensions, sample covariance matrix is nxn, and has 

up to n eigenvectors. So n PCs.
 Where does dimensionality reduction come from?

Can ignore the components of lesser significance. 

You do lose some information, but if the eigenvalues are small, you don’t 
lose much
 n dimensions in original data 
 calculate n eigenvectors and eigenvalues
 choose only the first p eigenvectors, based on their eigenvalues
 final data set has only p dimensions
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Within .40
threshold

K is the number of singular values used
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* *
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Summary: 
Latent Semantic Indexing

 LSI does not define a properly normalized probability distribution of 
observed and latent entities
 Does not support probabilistic reasoning under uncertainty and data fusion

(Deerwester et al., 1990)
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Probabilistic
Model

Real World
Data

P(Data | Parameters)

P(Parameters | Data)

(Generative Model)

(Inference)

Connecting Probability Models to 
Data
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Latent Semantic Structure in GM

Latent Structure

Words 




),()( ww PP

w

Distribution over words

)w(
)()|w()w|(

P
PPP 

 

Inferring latent structure
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How to Model Semantics?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

Source
Target
SMT

Alignment
Score
BLEU

Parse
Tree
Noun

Phrase
Grammar

CFG

likelihood
EM

Hidden
Parameters
Estimation

argMax

MT                    Syntax              Learning

0.6                          0.3                   0.1   

Unigram over vocabulary

To
pi

cs

AdMixing 
Proportion

Topic Models
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Why this is Useful?
 Q: What is it about?
 A: Mainly MT, with syntax, some learning

A Hierarchical Phrase-Based Model 
for Statistical Machine Translation

We present a statistical phrase-based 
Translation model that uses hierarchical 
phrases—phrases that contain sub-phrases. 
The model is formally a synchronous 
context-free grammar but is learned 
from a bitext without any syntactic 
information. Thus it can be seen as a 
shift to the formal machinery of syntax
based translation systems without any 
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical 

Phrase based model achieves a relative 
Improvement of 7.5% over Pharaoh, 
a state-of-the-art phrase-based system.

MT                    Syntax              Learning

AdMixing 
Proportion

0.6                          0.3                   0.1   

 Q: give me similar document?
 Structured way of browsing the collection

 Other tasks
 Dimensionality reduction 

 TF-IDF vs. topic mixing proportion

 Classification, clustering, and more …
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Words in Contexts

 “It was a nice shot. ”
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Words in Contexts (con'd)
 the opposition Labor Party fared even worse,  with a 

predicted 35 seats,  seven less than last election.
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TOPIC 1

TOPIC 2

DOCUMENT 2: river2 stream2 bank2 stream2 bank2

money1 loan1 river2 stream2 loan1 bank2 river2 bank2

bank1 stream2 river2 loan1 bank2 stream2 bank2 money1

loan1 river2 stream2 bank2 stream2 bank2 money1 river2

stream2 loan1 bank2 river2 bank2 money1 bank1 stream2

river2 bank2 stream2 bank2 money1

DOCUMENT 1: money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 money1

stream2 bank1 money1 bank1 bank1 loan1 river2 stream2

bank1 money1 river2 bank1 money1 bank1 loan1 bank1

money1 stream2

.3

.8

.2

Mixture 
Components

(distributions over 
elements)

admixing weight 
vector 

(represents all 
components’ 

contributions)

Bayesian approach: use priors   
Admixture weights ~ Dirichlet(  ) 
Mixture components ~ Dirichlet(  ) 

.7

A possible generative process of 
a  document
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Probabilistic LSI

wnznd

N
M




k

Hoffman (1999)
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Probabilistic LSI
 A "generative" model
 Models each word in a document as a sample from a mixture 

model.
 Each word is generated from a single topic, different words in 

the document may be generated from different topics.
 A topic is characterized by a distribution over words.
 Each document is represented as a list of admixing 

proportions for the components (i.e. topic vector  ).

wnznd

N
M




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wnznd

N
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
k


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27© Eric Xing @ CMU, 2006-2015



Latent Dirichlet Allocation

wnzn

N
M



K

 k

Blei, Ng and Jordan (2003)

Essentially a Bayesian pLSI:
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LDA
 Generative model
 Models each word in a document as a sample from a mixture 

model.
 Each word is generated from a single topic, different words in 

the document may be generated from different topics.
 A topic is characterized by a distribution over words.
 Each document is represented as a list of admixing 

proportions for the components (i.e. topic vector).
 The topic vectors and the word rates each follows a Dirichlet 

prior --- essentially a Bayesian pLSI 

wnzn

N
M



K
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N
M



K
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Topic Models = Mixed 
Membership Models = Admixture

Generating a document
Prior

θ 

z 

w β  
Nd

N 

K 

 
   

    

 
 from  ,| Draw -

 from  Draw-
  each wordFor  

prior  thefrom  

:1 nzknn

n

lmultinomiazw
lmultinomiaz

n
Draw






Which prior to use?
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Choices of Priors
 Dirichlet (LDA) (Blei et al. 2003)

 Conjugate prior means efficient inference
 Can only capture variations in each topic’s 

intensity independently

 Logistic Normal (CTM=LoNTAM) 
(Blei & Lafferty 2005, Ahmed & 
Xing 2006)
 Capture the intuition that some topics are highly 

correlated and can rise up in intensity together
 Not a conjugate prior implies hard inference

 Nested CRP (Blei et al 2005)
 Defines hierarchy on topics
 … 
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Generative Semantic of LoNTAM
Generating a document

- Log Partition Function
- Normalization Constant
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Outcomes from a topic model 
 The “topics”  in a corpus:

 There is no name for each “topic”, you need to name it!
 There is no objective measure of good/bad
 The shown topics are the “good” ones, there are many many trivial ones, meaningless ones, 

redundant ones, … you need to manually prune the results
 How many topics? …   
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Outcomes from a topic model 
 The “topic vector”  of each doc

 Create an embedding of docs in a “topic space”
 Their no ground truth of  to measure quality of inference 
 But on  it is possible to define an “objective” measure of goodness, such as classification 

error, retrieval of similar docs, clustering, etc., of documents
 But there is no consensus on whether these tasks bear the true value of topic models … 
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 The per-word topic indicator z:

 Not very useful under the bag of word representation, 
because of loss of ordering

 But it is possible to define simple probabilistic linguistic 
constraints (e.g, bi-grams) over z and get potentially 
interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]

Outcomes from a topic model 
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Outcomes from a topic model 
 The topic graph S (when using CTM):

 Kind of interesting for understanding/visualizing large corpora 
[David Blei, MLSS09]
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Outcomes from a topic model
 Topic change trends

[David Blei, MLSS09]
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The Big Picture

Unstructured Collection Structured Topic Network

Topic 
Discovery

Dimensionality  
Reduction

w1

w2

wn

x
x

x
x

T1

Tk T2
x x x

x

Word Simplex Topic Space 

(e.g, a Simplex)
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Computation on LDA

 Inference
 Given a Document D

 Posterior: P(Θ | μ,Σ, β ,D)
 Evaluation: P(D| μ,Σ, β )

 Learning
 Given a collection of documents {Di}

 Parameter estimation

   





,,logmaxarg
),,(

iDP

θn

βi
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 A possible query:

 Close form solution?

 Sum in the denominator over Tn terms, and integrate over n k-dimensional topic 
vectors

Exact Bayesian inference on LDA 
is intractable
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 Variational Inference

 Mean field approximation (Blei et al)
 Expectation propagation (Minka et al)
 Variational 2nd-order Taylor approximation (Ahmed and Xing)

 Markov Chain Monte Carlo

 Gibbs sampling (Griffiths et al)

Approximate Inference
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Collapsed Gibbs sampling
(Tom Griffiths & Mark Steyvers)

 Collapsed Gibbs sampling
 Integrate out 

For variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

z-i = z1
(t+1), z2

(t+1),…, zi-1
(t+1), zi+1

(t), …, zn
(t)

θn

βi
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Gibbs sampling 

 Need full conditional distributions for variables
 Since we only sample z we need

number of times word w assigned to topic j

number of times topic j used in document d

θn

βi

G

G
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling

i wi di zi zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

?

iteration
1             2

G

G
46© Eric Xing @ CMU, 2006-2015



Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Gibbs sampling
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Learning a TM
 Maximum likelihood estimation:

 Need statistics on topic-specific word assignment (due to z), topic 
vector distribution (due to ), etc.
 E.g,, this is the formula for topic k: 

 These are hidden variables, therefore need an EM algorithm (also 
known as data augmentation, or DA, in Monte Carlo paradigm)

 This is a “reduce” step in parallel implementation
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Conclusion
 GM-based topic models are cool

 Flexible 
 Modular
 Interactive

 There are many ways of implementing topic models
 unsupervised
 supervised

 Efficient Inference/learning algorithms
 GMF, with Laplace approx. for non-conjugate dist.
 MCMC

 Many applications
 …
 Word-sense disambiguation
 Image understanding
 Network inference
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