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Reading: Tutorial on Topic Model @ ACL12
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We are inundated with data ... ot

"“i"d'_;_ (from images.google.cn)

., search, browse, or
uge number of‘ctlext ang medcl)a gocuments

e Humans canr]ot afforcliqto deal with (e
measure similarity) a

e \We need computers to help out ...
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A task:

e Say, we want to have a mapping ..., so that

e Compare similarity # g
e Classify contents

e Cluster/group/categorize docs

e Distill semantics and perspectives
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L X X
0000
000 O
m o000
Representation: o
L] o
e Data: Bag of Words Representation
As for the Arabian and Palestinean voices that are against the
current negotiations and the so-called peace process, they are not
against peace per se, but rather for their well-founded ‘ .
predictions that Israel would NOT give an inch of the West bank - Arabian
(and most probably the same for Golan Heights) back to the
Arabs. An 18 months of "negotiations' in Madrid, and negotiations
Washington proved these predictions. Now many will jump on é .
me saying why are you blaming israelis for no-result negotiations. agaIHSt
I would say why would the Arabs stall the negotiations, what do peace
they have to loose ? Israel
Arabs 3
blaming
. . ' "/-ﬂ-‘ i
e Each document is a vector in the word space .
. Q| leamnin
e Ignore the order of words in a document. Only count matters! /%: P
1| intelligence
. . ' . JoumlomrinciaW g n;z:m
e A high-dimensional and sparse representation sl | e
Not efficient text processing tasks, e.g., search, document e 0| peils
classification, or similarity measure e :
Not effective for browsing .
{ | volume
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Subspace analysis o
Document

Term

T A D’
(m x n) (m x k) (k x k) (k x n)
cluster/topic/bas A priori weights Memberships
is (coordinates)
Distributions
(subspace)

e Clustering: (0,1) matrix

e LSI/NMF: “arbitrary” matrices

e Topic Models: stochastic matrix

e Sparse coding: “arbitrary” sparse matrices
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An example: oo
—

© Eric Xing @ CMU, 2006-2015 6



Principal Component Analysis s

e [he new variables/dimensions

e Are linear combinations of the original
ones

e Are uncorrelated with one another PC 2 PC 1
Orthogonal in original dimension space

e Capture as much of the original
variance in the data as possible

e Are called Principal Components

e Orthogonal directions of

greatest variance in data _ o _ o
e First principal component is the direction of

greatest variability (covariance) in the data
e Projections along PC1 e Second is the next orthogonal (uncorrelated)

discriminate the data most direction of greatest variability

e So first remove all the variability along the first component, and then

along any one aX|S find the next direction of greatest variability
e Andsoon...
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Computing the Components oe

e Projection of vector x onto an axis (dimension) u is u™x

e Direction of greatest variability is that in which the average square of
the projection is greatest:

Maximize u'XX"u
s.t u'u=1

Construct Langrangian u™XXTu — AuTu

Vector of partial derivatives set to zero
xx'u—Au=(xx"=A)u=0

As u # 0 then u must be an eigenvector of XXT with eigenvalue A

e ) is the principal eigenvalue of the correlation matrix C= XX

e The eigenvalue denotes the amount of variability captured along that

dimension
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Computing the Components o

e Similarly for the next axis, etc.

e S0, the new axes are the eigenvectors of the matrix of
correlations of the original variables, which captures the
similarities of the original variables based on how data
samples project to them

A

Gl

e Geometrically: centering followed by rotation

° Linear transformation

v

e

v
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Eigenvalues & Eigenvectors S

e For symmetric matrices, eigenvectors for distinct eigenvalues
are orthogonal

SVa = Ay Viz,and 4 # 4, = vy ev, =0

e All eigenvalues of a real symmetric matrix are real.
ifS—Al|=0andS=S"=> 1R

e All eigenvalues of a positive semidefinite matrix are non-
negative

YweR", W' Sw>0,thenif Sv=Av=1>0

© Eric Xing @ CMU, 2006-2015 10



Eigen/diagonal Decomposition

o Let S € R™*™ be a square matrix with m linearly

independent eigenvectors (a “non-defective” matrix)

e Theorem: Exists an eigen decomposition {

diagonal

S = UAU!

Unique
for
distinc
t eigen-
values

(cf. matrix diagonalization theorem)

e Columns of U are eigenvectors of S

e Diagonal elements of A are eigenvalues of S

A =diag(A1,..., Am), Ai > Aig1

© Eric Xing @ CMU, 2006-2015
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PCs, Variance and Least-Squares | ::

e The first PC retains the greatest amount of variation in the
sample

e The k" PC retains the kth greatest fraction of the variation in
the sample

e The k" largest eigenvalue of the correlation matrix C is the
variance in the sample along the k" PC

e The least-squares view: PCs are a series of linear least
squares fits to a sample, each orthogonal to all previous ones
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The Corpora Matrix

Doc 1 Doc 2 Doc 3
Word 1 3 0 0
Word 2 0 8 1
X= [ oo 0 1 3
Word 4 2 0 0
Word 5 12 0 0
0 0 0

© Eric Xing @ CMU, 2006-2015
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Singular Value Decomposition o

For an mxn matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

A=UxV'
A RN
mxm mxn Vis nxn

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues ), ... A, of AAT are the eigenvalues of ATA.

o =%
Y — dlag ((71 .0, ) <:: Singular values.
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SVD and PCA

e The first root is called the prinicipal eigenvalue which has an
associated orthonormal (uu = 1) eigenvector u

e Subsequent roots are ordered such that A;> A, >... > Ay with
rank(D) non-zero values.

e Eigenvectors form an orthonormal basis i.e. u;"u; = ;
e The eigenvalue decomposition of XXT = UZUT

e where U=[u,, u,, ..., uyland Z =diag[A , A5, ..., A ]
e Similarly the eigenvalue decomposition of XTX = VZVT
e The SVD is closely related to the above X=U 12 yT

e The left eigenvectors U, right eigenvectors V,

e singular values = square root of eigenvalues.

© Eric Xing @ CMU, 2006-2015
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How Many PCs? o

e For n original dimensions, sample covariance matrix is nxn, and has
up to n eigenvectors. So n PCs.

e Where does dimensionality reduction come from?

Can ignore the components of lesser significance.
25 +

20 ~

15

N j_ﬂ_ﬂ_ﬂ_ﬂ_ﬂfzg
O N

PC1 PC2 PC3 PC4 PC5 PCo6 PC7 PC8 PCO9 PC10

You do lose some information, but if the eigenvalues are small, you don’t
lose much

° n dimensions in original data

° calculate n eigenvectors and eigenvalues

° choose only the first p eigenvectors, based on their eigenvalues

e final data set has only p dimensions

Variance (%)
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K is the number of singular values used
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1.0

{01491 -0.1199 ) =

- -

0.1628 —0.1372
0.2068 —0.0488
0.0567  0.0614
0.1668 —0.1313
0.0258 —0.1246
04534 0.0386
0.3579  0.1710
02931 0.1426
0.0690 —0.1576
0.0940 —0.6535
0.0569 —0.2378
0.1560  0.0661
04948  0.1091
0.0460 —0.3363
0.0369 —0.4196
0.1797 —0.1456
0.1087 —0.2126
03814  0.0941

a591 0\
0 26471

Numbar of lactors

k=2 k=4 k=R
MS% 100 MR 092 MR 067
MIZ 0RR N9 089 MIZ 065
MR ORF M2 064 MIO 054
NIl 0822 MI0O 048
MIO 079 MI2 046
M7 074 MIl 040
Ml4 072
MI3 071 L L]
vw: oer  Within .40
M1 056
v o threshold
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Summary: sece

Latent Semantic IndeXingoeerwester etat., 19905 ©

Document

Term

X T A D’
(m x n) (m x k) (k x k) (k x n)
K
W:deﬂ“k k

k=1

e LSI does not define a properly normalized probability distribution of
observed and latent entities
e Does not support probabilistic reasoning under uncertainty and data fusion
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Connecting Probability Models to | $32:
Data 4

(Generative Model)
P(Data | Parameters)

T

Probabilistic Real World
Model Data

~_

P(Parameters | Data)
(Inference)
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Latent Semantic Structure in GM

Distribution over words
@t Struc@ P(w)= Z P(w,/)
14

Inferring latent structure

\ 4
_Pw|OP)
<WordsD P(EIw) = P(w)

© Eric Xing @ CMU, 2006-2015
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How to Model Semantics?

e Q: Whatis it about?

e A: Mainly MT, with syntax, some learning

l

/

e

0.6 0.3 0.1 AdMixing
Proportion
MT Syntax Learning
Source o
Target Parse likelihood
9 Tree EM
SMT :
: Noun Hidden o
Alignment O
Phrase Parameters | -5
Score U o)
BLEU Grammar Estimation E
CFG argMax

W

Unigram over vocabulary

Topic Models

© Eric Xing @ CMU, 2006-2015

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned

from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Why this is Useful?

e Q: What s it about?
e A: Mainly MT, with syntax, some learning

l / /

0.6 0.3 0.1 AdMixing
Proportion

MT Syntax Learning

e Q: give me similar document?

e Structured way of browsing the collection

e Other tasks

e Dimensionality reduction
TF-IDF vs. topic mixing proportion

Classification, clustering, and more ...

© Eric Xing @ CMU, 2006-2015

A Hierarchical Phrase-Based Model
for Statistical Machine Translation

We present a statistical phrase-based
Translation model that uses hierarchical
phrases—phrases that contain sub-phrases.
The model is formally a synchronous
context-free grammar but is learned

from a bitext without any syntactic
information. Thus it can be seen as a
shift to the formal machinery of syntax
based translation systems without any
linguistic commitment. In our experiments
using BLEU as a metric, the hierarchical
Phrase based model achieves a relative
Improvement of 7.5% over Pharaoh,

a state-of-the-art phrase-based system.

4
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Words in Contexts ot

. “Itwas a nice shot.”
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Words in Contexts (con'd)

e the opposition Labor Party fared even worse, with a
predicted 35 seats, seven less than last election.

© Eric Xing @ CMU, 2006-2015 24



A possible generative process of | 332
a document :

DOCUMENT 1: river? stream?
8 river?
\ stream? river? stream?
river?
‘/\/\ stream?
v
TOPIC 1
T
e . .
DOCUMENT 2: river? stream? bank? stream? bank?
< £ river? stream? bank? river? bank?
D o stream?river? bank? stream? bank?
s“eam‘g‘ river? stream? bank? stream? bank? river?
- stream? bank? river? bank? stream?
t‘\\'"zl“/ueq river? bank? stream? bank?
T/\_/\, %’ls
N~ "
TOPIC 2 o _
admixing weight . )
Mixture vector 0 Bayesian approach: use priors
Components  (represents all Admixture weights ~ Dirichlet( &)

(distributions over components’

elements) contributions)
© Eric Xing @ CMU, 2006-2015 25
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Probabilistic LSl 1600

@ . Wn ~ p(Wn|zn, 3)
(2
N
M

p(d, w,) = p(d)Z(H p(w, | 2,)p(z, Id)j

V/
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Probabilistic LSI

e A "generative" model

e Models each word in a document as a sample from a mixture

model.

e Each word is generated from a single topic, different words in
the document may be generated from different topics.

e A topic is characterized by a distribution over words.

e Each document is represented as a list of admixing
proportions for the components (i.e. topic vector 0 ).

D.

N

© Eric Xing @ CMU, 2006-2015
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Latent Dirichlet Allocation

Blei, Ng and Jordan (2003)

Essentially a Bayesian pLSI:

@),

0 ~ Dir(«)

Wn p(Wn|Zn, 16)

® e @

M

p(w) = | p(6) p(ﬂ)(H p(z,|0) p(W, |, )jdﬁ dp

© Eric Xing @ CMU, 2006-2015
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LDA o°

e (Generative model

e Models each word in a document as a sample from a mixture
model.

e Each word is generated from a single topic, different words in
the document may be generated from different topics.

e A topic is characterized by a distribution over words.

e Each document is represented as a list of admixing
proportions for the components (i.e. topic vector).

e The topic vectors and the word rates each follows a Dirichlet
prior --- essentially a Bayesian pLSI ®@

@ ()o@
N

© Eric Xing @ CMU, 2006-2015



Topic Models = Mixed T
Membership Models = Admixture |:°
Generating a document
Prior

— Draw @ from the prior

For each word n

-Draw z, from multinomial(@)
-Draw W, | z,,{f,, | from multinomial(ﬂzn)

Which prior to use?

© Eric Xing @ CMU, 2006-2015
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Choices of Priors o

e Dirichlet (LDA) (Blei et al. 2003)

e Conjugate prior means efficient inference

e Can only capture variations in each topic’s
intensity independently

e Logistic Normal (CTM=LoNTAM)
(Blei & Lafferty 2005, Ahmed &
Xing 2006)

e Capture the intuition that some topics are highly
correlated and can rise up in intensity together

e Not a conjugate prior implies hard inference

e Nested CRP (Blei et al 2005)

e Defines hierarchy on topics

© Eric Xing @ CMU, 2006-2015
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Generative Semantic of LONTAM

Generating a document

=, = ey
B OBETARMIRY LF cTetcmuawy Fieon 9moasd oy e
TTRLIOVY U 1R AE LRSI AR

For each word n
-Draw z, from multinomia 1(6)

- Draw w._ | zn,{ 1;k} from multinomia |(,an)

R
%

BN

QN LNK(:Uaz)
7/NNK—1(/u?2) 7k =0

K-1
0 = exp{yi — log[l + Z:e7i ]}
i1

£

\)

A\
Q“’Q

- Log Partition Function

- Normalization Constant

© Eric Xing @ CMU, 2006-2015
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Outcomes from a topic model

e The “topics” Bin a corpus:

T 59 T 104 T 31
image ftp card
jpeg pub monitor
comp.graphics color graphics dos
file mail video
gif version apple
images tar windows
format file drivers
bit information vga
files send cards
display server graphics
T 30 T 84 T 44
power water sale
ground energy price
. . wire air offer
sci.electronics L L
circuit nuclear shipping
supply loop sell
voltage hot interested
current cold mail
wiring cooling condition
signal heat email
cable temperature ed

T 42 T 78 T 47
israel jews armenian
israeli Jjewish turkish
politics.mideast peace 'isra)el' arlnenia}ns
writes israeli armenia
article arab turks
arab people genocide
war arabs russian
lebanese center soviet
lebanon jew people
people nazi muslim
T 44 T 94 T 49
sale don drive
price mail sesi
misc.forsale offer call disle
shipping package hard
sell writes mb
interested send drives
mail number ide
condition ve controller
email hotel floppy
cd credit system

e There is no name for each “topic”, you need to name it!

e There is no objective measure of good/bad

e The shown topics are the “good” ones, there are many many trivial ones, meaningless ones,
redundant ones, ... you need to manually prune the results

e How many topics? ...

© Eric Xing @ CMU, 2006-2015
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Outcomes from a topic model o

e The “topic vector” @ of each doc

80

60~

NP AN =

40+

+040*+0qO %+ 0

20

4o x +0d
3

-40+

-60—

80 1 1 1 I 1 1 I 1 ]
-100 -80 -60 -40 -20 0 20 40 60 80

e Create an embedding of docs in a “topic space”
e Their no ground truth of 8to measure quality of inference

e Buton ditis possible to define an “objective” measure of goodness, such as classification
error, retrieval of similar docs, clustering, etc., of documents

e But there is no consensus on whether these tasks bear the true value of topic models ...
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Outcomes from a topic model o

e The per-word topic indicator z:

The William Randolph Hearst Fouundation will give $1.25 million to Limecoln Center,
Metropolitan Opera Co., New York Philharmonic and Junilliard School.  *Omnr board
felt that we had a real opportnunity to make a mark on the futnre of the performing
arts with these grauts am act every bit as important as our traditional areas of support
in health, medical research, edncation and the social services,” Hearst Foundation
President Randolph A. Hearst said Monday inannowncing the grants. Lincoln Center’s
share will be $200,000 for its new building, which will honse yonng artists and provide
new public facilities. The Metropolitan Opera Co. and New York Philharmonic will
receive $400000 each. The Jnilliard School, where music and the performing arts are
tanght, will get $250.000. The Hearst Foundation, a leading supporter of the Lincoln
Center Counsolidated Corporate Fund, will make its usnal annnal $100.000 domation,

oo,
0
e Not very useful under the bag of word representation, /\
because of loss of ordering 2) &) &) &

e Butitis possible to define simple probabilistic linguistic
constraints (e.g, bi-grams) over z and get potentially
interesting results [Griffiths, Steyvers, Blei, & Tenenbaum, 2004]
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Outcomes from a topic model

e The topic graph S (when using CTM):
e

{ mamory | - H-I:Iu:I |
astivated | B,_,blg.:tg Vru . synapses
Iyrozine phosphonyiation laft carlical ¥ Itp
/— i Q / II.sun‘elc:e | glutamate I
| synaptic

activation ) DN\
musprurblai“/h cal cycis | A :\' fip
cav ol
T acy:IwI I—_ - gu-mnrgI I \ image \ neulons
' domain one computar | Sﬂl’T‘IpIE maarials
receptor ” cmv 1 mcp:f:';msa |[ prociem )\ device ;I?;II;I I
@ @ |' receptors amine acas - I;::_T;ﬁ:g | | :myrrlers
turaing | 50‘5"'"5‘5 ' cana mn'ﬂf’-' sosts
| sugport | —I ligand seguance prociems azer P""!n'u s
nill r:z;rm l IIQ&I’IEIS l=olated [ optica '— J I;-Iy;z:
program / saquancs Tignt particis
v apoptosis saquances @ esactrons | ex::-arlmsri
gename ol quaﬂy
tant I sIars
mutan
reactio astronomers
reactlonu universe

I y
' mutations
united states utants | [ T e B
| /
women WIE m““‘“"’" f L mCiIeculIe galaxies
II. ﬂmm molecules galaxy

call
magnetic flekd ransition statg

| universities | | soemon |
call lines
SIU(IBI'II NE Mo |I sgin
I| superconductivity
education T I SUDSICOnNUC
| I|I oressuie ue
| 7_/ | nigh pressLe zun
| | prESEUres up::-ar rr.anna . soiar Mnn |
T f fossil racord core maEories
Gavsiopmant, | oz - Inner eors ratioe PIﬂl'lB15 -'
fozsks . planet

o \ rasls!a?
mics pasasits smanyos —
amlgen vinus | mgg;; umsngﬂlla ‘IJII_ dinosaurs spaclas
! cellz hiw | | mutations genss 1 forsst \\‘
mm:;;grggcsunss 2as familiss | Spression { mr,;ﬁ:ns santnquake /; \
Infaction I mi e | PO earfquakes ! carbon IIlI
i russs 5' tault || caroon dioxics \
Images methans —
data wiatsr \
. ocZons
- stmosphanic |

\\Lﬂanun
\ ganatic anciant
l'DI.nd
cells | populaticn
I populations | rrllllnr yaarsagu voleanic

patients
dissse
| eatment L[ proteins —
conical | lesealchers diffsrances '"'“ deposits measuremants |
wariation I o — BEIH.IDBDI'\EIE
protein magma | ocsan —— ;
aruption Ica | concenirations
found volcanism / \ .

Kind of interesting for understanding/visualizing large corpora
© Eric Xing @ CMU, 2006-2015
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Outcomes from

e Topic change trends

"Theoretical Physics"”

a topic model

"Neuroscience"

1880 1900 1920 1940 1960 1980

el NEURON -

-

2000 1880 1900 1920 1940

' [David Blei, MLSS09]
1960

1980 2000

© Eric Xing @ CMU, 2006-2015
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The Big Picture

Unstructured Collection

Structured Topic Network

Topic

\

Word Simplex

my—>

>

Dimensionality T
Reduction

X X

© Eric Xing @ CMU, 2006-2015

Topic Space
(e.g, a Simplex)
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Computation on LDA +-

e Inference

% _“Ares” “HAndgees™ “Children™ “Edneation”

.
e Given a Document D wew  wmuo  cmpms  scuoos
FILM TAX WOMEN STUDENTS
SHOW FROGRAM FEOFLE SCHOOLS
MUSIC BUDCET CHILD EDUCATION
a MOVIE BILLION YEARS TEACHERS
. PLAY FEDERAL FAMILIES HIGH
Posterior: P(O | y,2, B ,D Mhou W on" M
" I J J SPENDING PARENTS TEACHER

NEW SAYS BENNETT

STATE FAMILY MANIGAT
. PLAN WELFARE NAMPHY
Evaluation: P(D 2 PROGRANS  PERCINT  PROSIDE
" J 1) | GRAMS PERCENT FRE! ENT
GOVERNMENT CARE ELEMENTARY

CONGRESS LIFE HAITI

f the performing arts are
1, & leading supporter af the Lincoln
£100,000 iam,

® Lea n | N g | I e i s

e Given a collection of documents {D;}

Parameter estimation

arg max ) log(P(Di 7 :3))
(4,2, 5)

© Eric Xing @ CMU, 2006-2015 29



" n 000
Exact Bayesian inference on LDA | $3::
Is intractable .o
e A possible query:
p(o,|D)="?
p(z,, | D)=?
o ose form solution? _Ppe..D)
Cl fi lut (0, D)= D)
{ZZ}I(H[E[ PXom |85, )P(Zy | 6, )J p(, IO!)J p(¢|G)de,, dp

p(D)

pD)= 3 [] [H[Hp(xn,m 18.,)P(Z,.n lo, >jp<a,, |a>jp<p|@>dal---daNdﬂ

1Znm?

e Sum in the denominator over T" terms, and integrate over n k-dimensional topic
vectors

© Eric Xing @ CMU, 2006-2015 40



Approximate Inference

e Variational Inference

e Mean field approximation (Blei et al)
e Expectation propagation (Minka et al)
e Variational 2"d-order Taylor approximation (Ahmed and Xing)

e Markov Chain Monte Carlo

e Gibbs sampling (Griffiths et al)

© Eric Xing @ CMU, 2006-2015
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Collapsed Gibbs sampling eoct
(Tom Griffiths & Mark Steyvers) o

e Collapsed Gibbs sampling

e Integrate out @

v
G @
For variablesz=12z,, z,, ..., z |

o Z
Draw z{®*V from P(zj|z; w) @
2. = 7,(41), 7,1 .

{21 22 2(T) :

© Eric Xing @ CMU, 2006-2015 42



Gibbs sampling

e Need full conditional distributions for variable

: G
e Since we only sample z we need

P(zi — j|z—i:w) X P(wi|zi — j:z—i;w—i)P(Zi = j|z_i) @I

(w)

(@

ni_l?j +G ni%lta

LY

number of times word w assigned to topic j

number of times topic j used in document d

© Eric Xing @ CMU, 2006-2015
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Gibbs sampling

O 00 31O U b WIN = =

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

[\)l\.)»—t»—t»—t»—t»—t»—t»—t»—t»—t»—tfl

iteration
1

—_ == N = NN~ N~ NN

© Eric Xing @ CMU, 2006-2015
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Gibbs sampling

o — o 000N B WN = -

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

[\)[\)r—tv—»—v—tv—t»—»—tr—tr—tr—tg_

iteration
1 2

Zi
?

—_ == N = NN~ N~ NN

© Eric Xing @ CMU, 2006-2015
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Gibbs sampling

o — o 000N B WN = -

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

[\)[\)r—tv—»—v—tv—t»—»—tr—tr—tr—tg

iteration
1 2

Zi
?

—_ == N = NN~ N~ NN

P(z; = j|lz_s,w)

© Eric Xing @ CMU, 2006-2015
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Gibbs sampling

o — o 000N B WN = -

50

Wi
MATHEMATICS
KNOWLEDGE
RESEARCH
WORK
MATHEMATICS
RESEARCH
WORK
SCIENTIFIC
MATHEMATICS
WORK
SCIENTIFIC
KNOWLEDGE

JOY

[\)[\)r—tv—»—v—tv—t»—»—tr—tr—tr—tg

iteration
1 2

Zi
?
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Learninga TM .

e Maximum likelihood estimation:

{1819182: vy Py }a a = argmax Zlog(P(Di ‘0[, /B))

(@.p)

e Need statistics on topic-specific word assignment (due to z), topic
vector distribution (due to 6), etc.

e E.g,, thisis the formula for topic k:
D Ny

n’

d ].dﬂ,_].

e These are hidden variables, therefore need an EM algorithm (also
known as data augmentation, or DA, in Monte Carlo paradigm)

e This is a “reduce” step in parallel implementation

© Eric Xing @ CMU, 2006-2015
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Conclusion
e GM-based topic models are cool
e Flexible
e Modular

e Interactive

e There are many ways of implementing topic models
e unsupervised
e supervised

e Efficient Inference/learning algorithms

e GMF, with Laplace approx. for non-conjugate dist.
e MCMC

e Many applications
[ J
e Word-sense disambiguation
e Image understanding

e Network inference
© Eric Xing @ CMU, 2006-2015
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