Machine Learning

10-701, Fall 2015

Deep Learning

© Eric Xing @ CMU, 2015

A perennial challenge in computer 3

vision: feature engineering o

AY
s
Y
1
4
¥
AR "

- o
r ""1“—,
e S Bl i a4
N s e = 7

Image gradients Keypoint descriptor

‘,-‘" /,,’-. v d=04,i=0.3 ===
[/ f |
. [
{ \) |
\ o /

d=0.0,i=1.0==73
I

0 d 1

SIFT Spin image

Orientation Voting

l._xle’;écaf 'Normaﬁiation&_"}

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning

[EXTONS T Efc Xing @ CMU, 2015 OOt

Normalized patch Spin image
Pt M PN I e ¢~ 1.0.i=0.1 e
A FYINLIE] \
P A %
o™
t
= A =

(e)

p ar21d Ng

Automatic feature learning?

e Successful learning of intermediate representations
[Lee et al ICML 2009, Lee et al NIPS 2009]

High-level
U B Layer 3 linguistic representations

I ANNKSINT e REts I =

© Eric Xing @ CMU, 2015 3

“Deep” models oo

e Neural Networks: Feed-forward*
e You have seen it

e Autoencoders (multilayer neural net with target output = input)

e Non-probabilistic -- Directed: PCA, Sparse Coding
e Probabilistic -- Undirected: MRFs and RBMs*

e Convolutional Neural Nets
e Recursive Neural Networks*

© Eric Xing @ CMU, 2015 4

Neural Network

Loss

Function

c
O
=
©
>
=
O
<

© Eric Xing @ CMU, 2015

Local Computation At Each Unit ol

Linear Combination + Nonlinear Activation

Activation units in the lower
Function layer

Lrs.]
, - a(zwmxij

Weights
connecting to
units in the lower
layer

© Eric Xing @ CMU, 2015 6

Deep Neural Network

SE

Output

)
-
o

i

Activation Functions ot

» Applied on the hidden units
* Achieve nonlinearity
* Popular activation functions

Sigmoid Tanh Rectified Linear

© Eric Xing @ CMU, 2015 8

. oss Functions

e Squared loss for regression
(y —t)?
7 N

Prediction True value

» Cross entropy loss for classification
exp(Yk)

K
— Yo . tiulna, a, =
Zie=1 Iy ay N1 exp(y))

Class label I _
Prediction

© Eric Xing @ CMU, 2015

Neural Network Prediction

« Compute unit values layer by layer in a forward
manner

* Prediction function Activation
Function Input

Yk =] 1uk\6 W]lx)

|

Output Weights

© Eric Xing @ CMU, 2015

10

Neural Network Prediction

c
)
[®)
O
I

Neural Network Prediction

c
Q
ie)
O
I

Neural Network Prediction

c

)
i)
e
I

13

Neural Network Prediction

]
-
Q.
)
-
@)

4
Z u1i Zi
1=1

Hidden

1+e™”

14

© Eric Xing @ CMU, 2015

Neural Network Prediction

c

(&)
o
e
I

1+e™”

15

Xing @ CMU, 2015

© Eric

Neural Network Prediction

Output

Hidden

© Eric Xing @ CMU, 2015

16

Neural Network Training

e Gradient descent

e Back-Propagation (BP)
» Aroutine to compute gradient
e Use chain rule of derivative

© Eric Xing @ CMU, 2015

17

Neural Network Training

e Goal: compute gradient
L « — Training loss

O0W;j «— Weight between unit i and j

* Apply chain rule 9L oL da; Linear combination

value aj = Zi WjiZ;

aWji aa] Wji

Called error, computed @
recursively in a W.
backward manner]

© Eric Xing @ CMU, 2015 18

Neural Network Training

e Apply chain rule (cont’dg
a.
_J _ z; < Derivative of activation
Wg function
da, Oday 0z;

a_aj B aZ] ﬁa]

= ijU'(aj)

— —I=packward error x forward activation

. oL
gradient= =
aWji aaj Wi

 Pseudo code of BP

While not converge
1. compute forward activations
2. compute backward errors
3. compute gradients of weights
4. perform gradient descent

© Eric Xing @ CMU, 2015

Pretraining

* A better initialization strategy of weight parameters
« Based on Restricted Boltzmann Machine
 An auto-encoder model
* Unsupervised
» Layer-wise, greedy

o Useful when training data is limited
* Not necessary when training data is rich

© Eric Xing @ CMU, 2015

20

Restricted Boltzmann Machine

© Eric Xing @ CMU, 2015

21

Layer-wise Unsupervised Pre- T
training -

Features ® .
Input O .

© Eric Xing @ CMU, 2015 22

Layer-wise Unsupervised Pre-
training -

Auto-encoder:

Reconstruction
of input

Input

Features

Input

© Eric Xing @ CMU, 2015 23

Layer-wise Unsupervised Pre- T
training -

Features 9
Input ‘ ‘

© Eric Xing @ CMU, 2015 24

Layer-wise Unsupervised Pre-
training -

More abstract
features

Features

Input

© Eric Xing @ CMU, 2015 25

Layer-wise Unsupervised Pre- T
training oo

Auto-encoder:

Reconstruction
of features

More abstract
features

mmeeee——— |

Features 9

Input

© Eric Xing @ CMU, 2015 26

Layer-wise Unsupervised Pre-
training -

More abstract
features

Features

Input

© Eric Xing @ CMU, 2015 27

Layer-wise Unsupervised Pre-
training

Even more abstract
features

More abstract
features

Features

Input

© Eric Xing @ CMU, 2015 28

Supervised Fine-Tuning -

* Use the weights learned in unsupervised pretraining to
Initialize the network

e Then run BP In supervised setting

Output Target
f(X) 7Y

Even more
abstract features

More abstract
features

features

input

© Eric Xing @ CMU, 2015 29

Convolutional Neural Network

e Some contents are borrowed from Rob Fergus, Yan Lecun and Stanford’s course

© Eric Xing @ CMU, 2015

30

Ordinary
Neural
Network
output layer
input
layer hidden layer
Now — —

© Eric Xing @ cMu, 2015 Figure courtesy, Fei-Fei, Andrej Karpathy

A
All Neural Net
activations
: HEIGHT
arranged in 3
dimensions
/WIDTH

DEPTH

For example, a CIFAR-10 image is a 32*32*3 volume: 32
width, 32 height, 3 depth (RGB)

© Eric Xing @ CMU, 2015 Figure courtesy, Fei-Fei, Andrej Kagpathy

Local connectivity

Image: 32 * 32 * 3 volume

ot A before: full connectivity:
e 32 * 32 * 3 weights for each
neuron

/ 32 now: one unit will connect

et to, e.g. 5*5*3 chunk and

>O only have 5*5*3 weights

Note the connectivity Is:

A - local in space

- full in depth

4

© Eric Xing @ CMU, 2015 33

000
0000
0000
. L)
Convolution oS
* One local region only gives one output
o Convolution: Replicate the column of hidden units
across space, with some stride
e 7 * 7 Input * Produce a map
 Assume 3*3 connectivity, What'’s the size of the map?

stride =1 5*5

© Eric Xing @ CMU, 2015 34

Convolution oo

* One local region only gives one output

o Convolution: Replicate the column of hidden units
across space, with some stride

e /* 7 Input

» Assume 3*3 connectivity, =5
stride = 1

e What If stride = 27

© Eric Xing @ CMU, 2015 35

Convolution

e One local region only gives one output

o Convolution: Replicate the column of hidden units
across space, with some stride

o 7* 7 Input * What If stride = 3?
=)

 Assume 3*3 connectivity,
stride =1

© Eric Xing @ CMU, 2015

36

Convolution: In Practice e

e Zero Padding
e Input size: 7 *7
o Filter Size: 3*3, stride 1
 Pad with 1 pixel border

o | o |oOo|O | ©

« Output size?
e 7*7 =>preserved size!

© Eric Xing @ CMU, 2015 Slide courtesy, Fei-Fei, Andrej Kargathy

Convolution: Summary s

o Zero Padding
 Input volume of size W1 * H1 * D1]

» Using K units with receptive fields F x F and applying them at
strides of S gives

Output volume: [W2, H2, D2]

« W2=(W1-F)/S+1
c H2=(H1-F)/S+1
. D2 =k

o Slide courtesy, Fei-Fei, Andrej Karpathy
© Eric Xing @ CMU, 2015 38

Convolution: Problem

e Assume input [32 * 32 * 3]

« 30 units with receptive field 5 * 5, applied at stride
1/pad 1

=> Output volume: [30 * 30 * 30]

At each position of the output volume, we need 5*5* 3
weights

=> Number of weights in such layer: 27000 * 75 = 2

million ®
ldea:

Weight sharing!

Learn one unit, let the unit
convolve across all local
recegtive fields!

© Eric Xing @ CMU, 2015

39

Convolution: Problem

e Assume input [32 * 32 * 3]
« 30 units with receptive field 5 * 5, applied at stride 1/pad 1
=> QOutput volume: [30 * 30 * 30] = 27000 units

Weight sharing

=> Before: Number of weights in such layer: 27000 * 75 = 2
million ®

=> After: weight sharing: 30 * 75 = 2250 ©

But also note that sometimes it’s not a good idea to do
weight sharing! When?

© Eric Xing @ CMU, 2015 40

Convolutional Layers

« Connect units only to local receptive fields

« Use the same unit weight parameters for units in each “depth
slice” (i.e. across spatial positions)

/ Can call the units “filters”
We call the layer convolutional because
it is related to convolution of two signals

®>
flx,yl*glx,y] = Z ZfIn,.nzl-gl.\'—n,._\'-nzl

_/ Sometimes we also add a bias term b, y = Wx + b,
one activation map (a depth S"CB), like what we have done for ordinary NN
computed with one set of weights

Short question: Will convolution layers

introduce nonlinearity?
© Eric Xing @ CMU, 2015 41

Stacking Convolutional Layers

Low-Level
Feature

Mid-Level
—

Feature

High-Level
— —

Feature

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

© Eric Xing @ CMU, 2015

42

Pooling Layers :s

* In ConvNet architectures, Conv layers are often
followed by Pool layers

* makes the representations smaller and more manageable
without losing too much information. Computes MAX

operation (most common)

Single depth slice

dl1]1]2)4
max pool with 2x2 filters
5|16 |7 | 8 | andstride2 6|8
J|2(1]0 3|4
11234

y Slide courtesy, Fei-Fei, Andrej Karpathy
- R, £0.L5 43

Pooling Layers

* In ConvNet architectures, Conv layers are often
followed by Pool layers

* makes the representations smaller and more manageable
without losing too much information. Computes MAX
operation (most common)

 Input volume of size [W1 x H1 x D1]

* Pooling unit receptive fields F x F and applying them at
strides of S gives

e Output volume: [W2, H2, D1]: depth unchanged!
W2 = (W1-F)/S+1,
H2 = (H1-F)/S+1

Short question: Will pooling layer introduce nonlinearity?

© Eric Xing @ CMU, 2015 44

Nonlinerity

e Similar to NN, we need to introduce nonlinearity in
CNN

e Sigmoid
e Tanh

 RELU: Rectified Linear Units - |
« Simplifies backpropagation
* Makes learning faster
e Avoids saturation issues

;;;;;;;;;

© Eric Xing @ CMU, 2015 Slide courtesy, Yan Lgcun

Convolutional Networks: 1989

C3: . maps 16@10x10
C1: feature maps S4:1. maps 16@5x5

INPUT 6@28x28 |
CS:1yer Fg;: layer QUTPUT
B84 10

32x32 S2:1. maps

6@14x14

I
| Full conrlection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

LeNet: a layered model composed of
convolution and subsampling operations
followed by a holistic representation and
ultimately a classifier for handwritten digits.
[LeNet]

© Eric Xing @ CMU, 2015 Slide courtesy, Yanggingia

Convolutional Nets: 2012

‘t 3 \‘7 A
g = —! ‘ 3 \ 3,
‘ | s f AN 1T\ 3
" 0 92 128 209 \ [25 \dense
5 27 128 = .
\ 13 \13 13
_J N TR 13 N E 13 dense | [(dense
s { | 1000
! 192 192 128 Max [[
\istria Max 128 Max pooling 403 2048
of 4 pooling pooling
3 48
AlexNet: a layered model composed of + data
convolution, subsampling, and further + gpu

operations followed by a holistic
representation and all-in-all a landmark
classifier on

ILSVRC12. [AlexNet]

+ non-saturating nonlinearity
+ regularization

Slide courtesy, Yangqing,dia

© Eric Xing @ CMU, 2015

Convolutional Nets: 2014

o0000

i 4
1 piq00
1 1 A Egﬂmgaﬁgﬂggﬂﬂagﬂggﬂﬂ’
safaafadiiddgeds gl 1ot I
" 'I 'i Filter
HEHE HWT ;iiil::\%%%‘
ILSVRC14 Winners: ~6.6% Top-5 error et convottons | | 1t conliions | 33 max poong
GooglLeNet: composition of multi-
scale dimension-reduced modules Previous aye
(pictured) + depth
- VGG: 16 layers of 3x3 convolution + data

Interleaved with max pooling + 3
fully-connected layers

+ dimensionality reduction
Slide courtesy, Yangqing,glia

© Eric Xing @ CMU, 2015

Training CNN: Use GPU 4+

e Convolutional layers
e Reduce parameters BUT Increase computations

e FC layers
e each neuron has more weights
output layer

e but less computations input

layer hidden layer

.
I
W

a hidden neuron in
next layer

e Conv layers
e each neuron has less weights

e but more computations. Why

PU is good
at

convoluti

because

il

© Eric Xing @ CMU, 2015 49

Training CNN: depth cares!

g 8
i
' BB E
g oa g had Mg glaadte
ﬂmﬂﬁ@ﬂﬁﬁﬁﬂﬁﬂﬂﬁﬁﬂﬂgg B8 08 pRo.n
B B B gpo a0
e 21 Layers!

e Gradient vanishes when the network is too deep: Lazy to learn!

e Add intermediate loss layers to produce error signals!
e Do contrast normalization after each conv layer!
e Use RelU to avoid saturation!

© Eric Xing @ CMU, 2015

50

Training CNN: Huge model needs
more data!

- K 3
f . M 3 v N 3
. 5 . X \ 3 A \
: \ I 3 -) p :
\ 5 3 \ 1
11} i| _
a8 : B 192 192 128 2 204s \dense

i3 5 o7 128 ' —
.) 13 \13) 13
- 5‘. I J. =¥ . | 5 ?1)
224 : J v\ 3 i —5cH\ 3
f I 3 U s ’ 13 dense’| |densq
. o7 3 \ 3
] 55 \ 3 . 1600
11 192 192 128 Max L] ||
} i 2048 2048
224\(istrid Max 128 Max pooling
of 4 pooling pooling
3 48

IM&AGENET

e Only 7 layers, 60M parameters!
e Need more labeled data to train!
e Data augmentation: crop, translate, rotate, add noise!

© Eric Xing @ CMU, 2015

Training CNN: highly nonconvex
objective

e Demand more advanced optimization techniques

e Add momentum as we have done for NN

e Learning rate policy
decrease learning rate regularly!
different layers use different learning rate!
observe the trend of objective curve more often!

e Initialization really cares!

Supervised pretraining
Unsupervised pretraining

© Eric Xing @ CMU, 2015

52

Training CNN: avoid overfitting

e More data are always the best way to avoid overfitting
e data augmentation

e Add regualizations: recall what we have done for linear
regression

e Dropout

(=5

Neural Net

a) Standarc

© Eric Xing @ CMU, 2015

53

Visualize and Understand CNN °°

- f 3
1 N 3 . A1 3
" 5 \ K "' \ 4 3 3
- | Y 1 , ; .
11N 3 .
[4 3., 5 192 192 128 2048 \ / 20as \dense
11 2 128 — —
]
\ 13 13 . 13
5, i
‘ \| I3 ' dense | |dense
: f ' 27 3‘ 3 13 13
N 55 \ 3- | 1000
u 192 192 128 Max n ||
; 2048 2048
224\ J1Strid Max 128 Max pooling 0
“of 4 pooling pooling
3 48

A CNN transforms the
Image to 4096
numbers that are then
linearly classified.

© Eric Xing @ CMU, 2015 54

Visualize and Understand CNN

e Find images that maximize some class score:

dumbbell dalmatian washing machine computer keyboard kit fox

bell pepper husky

Yes, Google
Inceptionism!

© Eric Xing @ CMU, 2015 55

Visualize and Understand CNN

e More visualizations

https://www.youtube.com/watch?v=AgkflQ4l
GaM&feature=youtu.be

© Eric Xing @ CMU, 2015

56

Limitations

e Supervised Training

 Need huge amount of labeled data, but label is
scarce!

e Slow Training

» Train an AlexNet on a single machine need one
week!

e Optimization
« Highly nonconvex objective

e Parameter tuning is hard
 The parameter space is so large...

© Eric Xing @ CMU, 2015 57

Summary
* Neural network with specialized connectivity structure

o Stack multiple stages of feature extractors

« Higher stages compute more global, more invariant
features

* Classification layer at the end

C3: f. maps 16@10x10
INPUT C1: feature maps S4.1. maps 16@5x5

6@28x28
Saxd2 §2: 1. maps CS: laver ce.
6@14x14 I ve F&layer %JTPUT

|
| Full conAection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Slide courtesy, Rob Egrgus

© Eric Xing @ CMU, 2015

Summary

e Feed-forward
« Convolve input
* Non-linearity (rectified linear)
» Pooling (local max, mean)

Feature maps

° Supervised Normalization
* Train convolutional filter s by back-propagation _ _
classification error at the end Spatial pooling
C3:f. maps 16@10x10
C1: feature maps - 841, maps 16@5x5

INPUT
3232 6@28x28

S2:1. maps

' - CS. layer pg. Non-linearit
o 6@14x14 R laye P layor QUTPUT y

Convolution
(Learned)

- 7 __ I
i | Ful confecton | Gaussian connections Input Image
Convolutions Subsampling Convolutions Subsampling Full connection

© Eric Xing @ CMU, 2015 59

Further reading -

e Andrej Karpathy: The Unreasonable Effectiveness of
Recurrent Neural Networks

(http://karpathy.github.i0/2015/05/21/rnn-effectiveness)

e Recurrent Neural Networks Tutorial

(http://www.wildml.com/2015/09/recurrent-neural-networks-
tutorial-part-1-introduction-to-rnns)

© Eric Xing @ CMU, 2015

60

