
Deep Learning

Eric Xing
(and Pengtao Xie)

Lecture 8, October 6, 2015

Machine Learning

10-701, Fall 2015

© Eric Xing @ CMU, 2015 1

Courtesy: Lee and Ng

A perennial challenge in computer
vision: feature engineering

SIFT Spin image

HoG RIFT

Textons GLOH

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning

2© Eric Xing @ CMU, 2015

Automatic feature learning?
 Successful learning of intermediate representations

[Lee et al ICML 2009, Lee et al NIPS 2009]

© Eric Xing @ CMU, 2015 3

“Deep” models
 Neural Networks: Feed-forward*

 You have seen it

 Autoencoders (multilayer neural net with target output = input)
 Non-probabilistic -- Directed: PCA, Sparse Coding
 Probabilistic -- Undirected: MRFs and RBMs*

 Convolutional Neural Nets
 Recursive Neural Networks*

© Eric Xing @ CMU, 2015 4

Neural Network

Input

Hidden

Output

1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y Loss
Function

Activation
Function

Weights

© Eric Xing @ CMU, 2015 5

Local Computation At Each Unit

5

2 2
1

i i
i

z w x


 
  

 


1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output Activation
Function

Weights
connecting to

units in the lower
layer

units in the lower
layer

Linear Combination + Nonlinear Activation

© Eric Xing @ CMU, 2015 6

Deep Neural Network

Input

More
Hidden
Layers

Output

1x 2x 3x 4x 5x

1z 2z 3z 4z

2u 3u 4u

1y 2y 3y

1u

…………

© Eric Xing @ CMU, 2015 7

Activation Functions

Sigmoid Tanh Rectified Linear

• Applied on the hidden units
• Achieve nonlinearity
• Popular activation functions

© Eric Xing @ CMU, 2015 8

Loss Functions

• Squared loss for regression
ଶ

• Cross entropy loss for classification

௞ ௞
௄
௞ୀଵ ௞

ୣ୶୮	ሺ௬ೖሻ
∑ ୣ୶୮	ሺ௬ೕሻ಼
ೕసభ

Prediction True value

Class label
Prediction

© Eric Xing @ CMU, 2015 9

Neural Network Prediction

© Eric Xing @ CMU, 2015

• Compute unit values layer by layer in a forward
manner

• Prediction function

௞ ௞௝ ௝௜ ௜
ହ
௜ୀଵ

ସ
௝ୀଵ

Activation
Function

Weights

Input

Output

10

Neural Network Prediction

5

1 1
1

i i
i

z w x


 
  

 


1()
1 xx

e
 



1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output

© Eric Xing @ CMU, 2015 11

Neural Network Prediction

5

2 2
1

i i
i

z w x


 
  

 


1()
1 xx

e
 



1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output

© Eric Xing @ CMU, 2015 12

Neural Network Prediction

5

4 4
1

i i
i

z w x


 
  

 


1()
1 xx

e
 



1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output

© Eric Xing @ CMU, 2015 13

Neural Network Prediction

4

1 1
1

i i
i

y u z


 
  

 


1()
1 xx

e
 



1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output

© Eric Xing @ CMU, 2015 14

Neural Network Prediction

4

2 2
1

i i
i

y u z


 
  

 


1()
1 xx

e
 



1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output

© Eric Xing @ CMU, 2015 15

Neural Network Prediction

4

3 3
1

i i
i

y u z


 
  

 


1()
1 xx

e
 



1x 2x 3x 4x 5x

1z 2z 3z 4z

1y 2y 3y

11w 12w

11u 12u

Input

Hidden

Output

© Eric Xing @ CMU, 2015 16

Neural Network Training

• Gradient descent
• Back-Propagation (BP)

• A routine to compute gradient
• Use chain rule of derivative

© Eric Xing @ CMU, 2015 17

Linear combination
value ௝ܽ ൌ ∑ ௜௜ݖ௝௜ݓ

Neural Network Training
• Goal: compute gradient

ܮ߲
௜௝ݓ߲

• Apply chain rule
ܮ߲
௝௜ݓ߲

ൌ
ܮ߲
߲ ௝ܽ

߲ ௝ܽ

௝௜ݓ
ܮ߲
߲ ௝ܽ

ൌ ෍
ܮ߲
߲ܽ௞

߲ܽ௞
௝ܽ௞

jiw

Training loss
Weight between unit ݅ and ݆

kz

jz

iz

Called error, computed
recursively in a

backward manner

© Eric Xing @ CMU, 2015 18

Neural Network Training
• Apply chain rule (cont’d)

߲ ௝ܽ

௝௜ݓ
ൌ ௜ݖ

߲ܽ௞
߲ ௝ܽ

ൌ
߲ܽ௞
௝ݖ߲

௝ݖ߲
߲ ௝ܽ

ൌ ᇱሺߪ௞௝ݓ ௝ܽሻ

gradient= డ௅
డ௪ೕ೔

ൌ డ௅
డ௔ೕ

డ௔ೕ
௪ೕ೔

=backward error x forward activation

• Pseudo code of BP

jiw

kz

jz

iz

Derivative of activation
function

While not converge
1. compute forward activations
2. compute backward errors
3. compute gradients of weights
4. perform gradient descent

© Eric Xing @ CMU, 2015 19

Pretraining
• A better initialization strategy of weight parameters

• Based on Restricted Boltzmann Machine
• An auto-encoder model
• Unsupervised
• Layer-wise, greedy

• Useful when training data is limited
• Not necessary when training data is rich

© Eric Xing @ CMU, 2015 20

Restricted Boltzmann Machine

© Eric Xing @ CMU, 2015 21

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

© Eric Xing @ CMU, 2015 22

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

Reconstruction
of input

... ... Input
?
=

© Eric Xing @ CMU, 2015 23

Auto-encoder:

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

© Eric Xing @ CMU, 2015 24

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract
features

...

© Eric Xing @ CMU, 2015 25

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract
features

...

Reconstruction
of features

... ...=
?

© Eric Xing @ CMU, 2015 26

Auto-encoder:

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract
features

...

© Eric Xing @ CMU, 2015 27

Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract
features

...

Even more abstract
features

...

© Eric Xing @ CMU, 2015 28

Supervised Fine-Tuning
• Use the weights learned in unsupervised pretraining to

initialize the network
• Then run BP in supervised setting

© Eric Xing @ CMU, 2015 29

Convolutional Neural Network

 Some contents are borrowed from Rob Fergus, Yan Lecun and Stanford’s course

© Eric Xing @ CMU, 2015 30

Ordinary
Neural

Network

Now

Figure courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2015 31

All Neural Net
activations
arranged in 3
dimensions

For example, a CIFAR-10 image is a 32*32*3 volume: 32
width, 32 height, 3 depth (RGB)

Figure courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2015 32

Local connectivity

© Eric Xing @ CMU, 2015

32

32

3

image: 32 * 32 * 3 volume

before: full connectivity:
32 * 32 * 3 weights for each
neuron

now: one unit will connect
to, e.g. 5*5*3 chunk and
only have 5*5*3 weights

Note the connectivity is:
- local in space
- full in depth

33

Convolution

© Eric Xing @ CMU, 2015

• One local region only gives one output
• Convolution: Replicate the column of hidden units

across space, with some stride

• 7 * 7 Input
• Assume 3*3 connectivity,

stride = 1

• Produce a map
• What’s the size of the map?

5 * 5
34

Convolution

© Eric Xing @ CMU, 2015

• One local region only gives one output
• Convolution: Replicate the column of hidden units

across space, with some stride

• 7 * 7 Input
• Assume 3*3 connectivity,

stride = 1

• What if stride = 2?

35

Convolution

© Eric Xing @ CMU, 2015

• One local region only gives one output
• Convolution: Replicate the column of hidden units

across space, with some stride

• 7 * 7 Input
• Assume 3*3 connectivity,

stride = 1

• What if stride = 3?

36

Convolution: In Practice

© Eric Xing @ CMU, 2015

• Zero Padding
• Input size: 7 * 7
• Filter Size: 3*3, stride 1
• Pad with 1 pixel border

• Output size?
• 7 * 7 => preserved size!

Slide courtesy, Fei-Fei, Andrej Karpathy37

Convolution: Summary

© Eric Xing @ CMU, 2015

• Zero Padding
• Input volume of size [W1 * H1 * D1]
• Using K units with receptive fields F x F and applying them at

strides of S gives
Output volume: [W2, H2, D2]

• W2 = (W1 – F)/S + 1
• H2 = (H1 - F) / S + 1
• D2 =k

Slide courtesy, Fei-Fei, Andrej Karpathy
38

Convolution: Problem

© Eric Xing @ CMU, 2015

• Assume input [32 * 32 * 3]
• 30 units with receptive field 5 * 5, applied at stride

1/pad 1
=> Output volume: [30 * 30 * 30]

At each position of the output volume, we need 5 * 5 * 3
weights

=> Number of weights in such layer: 27000 * 75 = 2
million 

Idea:
Weight sharing!

Learn one unit, let the unit
convolve across all local
receptive fields!

39

Convolution: Problem

© Eric Xing @ CMU, 2015

• Assume input [32 * 32 * 3]
• 30 units with receptive field 5 * 5, applied at stride 1/pad 1

=> Output volume: [30 * 30 * 30] = 27000 units

Weight sharing
=> Before: Number of weights in such layer: 27000 * 75 = 2

million 
=> After: weight sharing: 30 * 75 = 2250 

But also note that sometimes it’s not a good idea to do
weight sharing! When?

40

Convolutional Layers

© Eric Xing @ CMU, 2015

• Connect units only to local receptive fields
• Use the same unit weight parameters for units in each “depth

slice” (i.e. across spatial positions)

Can call the units “filters”

We call the layer convolutional because
it is related to convolution of two signals

Short question: Will convolution layers
introduce nonlinearity?

Sometimes we also add a bias term b, y = Wx + b,
like what we have done for ordinary NN

41

Stacking Convolutional Layers

© Eric Xing @ CMU, 2015 42

Pooling Layers

© Eric Xing @ CMU, 2015

• In ConvNet architectures, Conv layers are often
followed by Pool layers

• makes the representations smaller and more manageable
without losing too much information. Computes MAX
operation (most common)

Slide courtesy, Fei-Fei, Andrej Karpathy
43

Pooling Layers

© Eric Xing @ CMU, 2015

• In ConvNet architectures, Conv layers are often
followed by Pool layers

• makes the representations smaller and more manageable
without losing too much information. Computes MAX
operation (most common)

• Input volume of size [W1 x H1 x D1]
• Pooling unit receptive fields F x F and applying them at

strides of S gives
• Output volume: [W2, H2, D1]: depth unchanged!

W2 = (W1-F)/S+1,
H2 = (H1-F)/S+1

Short question: Will pooling layer introduce nonlinearity?

44

Nonlinerity

© Eric Xing @ CMU, 2015

• Similar to NN, we need to introduce nonlinearity in
CNN

• Sigmoid
• Tanh
• RELU: Rectified Linear Units -> preferred

• Simplifies backpropagation
• Makes learning faster
• Avoids saturation issues

Slide courtesy, Yan Lecun45

Convolutional Networks: 1989

LeNet: a layered model composed of
convolution and subsampling operations
followed by a holistic representation and
ultimately a classifier for handwritten digits.
[LeNet]

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2015 46

Convolutional Nets: 2012

AlexNet: a layered model composed of
convolution, subsampling, and further
operations followed by a holistic
representation and all-in-all a landmark
classifier on
ILSVRC12. [AlexNet]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2015 47

Convolutional Nets: 2014

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-

scale dimension-reduced modules
(pictured)

- VGG: 16 layers of 3x3 convolution
interleaved with max pooling + 3
fully-connected layers

+ depth
+ data
+ dimensionality reduction

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2015 48

Training CNN: Use GPU
 Convolutional layers

 Reduce parameters BUT Increase computations

 FC layers
 each neuron has more weights
 but less computations

 Conv layers
 each neuron has less weights
 but more computations. Why?

because of weight sharing!
it will convolve at every position!

GPU is good
at

convolution!

© Eric Xing @ CMU, 2015 49

Training CNN: depth cares!

 21 Layers!

 Gradient vanishes when the network is too deep: Lazy to learn!

 Add intermediate loss layers to produce error signals!
 Do contrast normalization after each conv layer!
 Use ReLU to avoid saturation!

© Eric Xing @ CMU, 2015 50

Training CNN: Huge model needs
more data!

 Only 7 layers, 60M parameters!
 Need more labeled data to train!
 Data augmentation: crop, translate, rotate, add noise!

© Eric Xing @ CMU, 2015 51

Training CNN: highly nonconvex
objective

 Demand more advanced optimization techniques

 Add momentum as we have done for NN

 Learning rate policy
 decrease learning rate regularly!
 different layers use different learning rate!
 observe the trend of objective curve more often!

 Initialization really cares!
 Supervised pretraining
 Unsupervised pretraining

© Eric Xing @ CMU, 2015 52

Training CNN: avoid overfitting

 More data are always the best way to avoid overfitting
 data augmentation

 Add regualizations: recall what we have done for linear
regression

 Dropout

© Eric Xing @ CMU, 2015 53

Visualize and Understand CNN

© Eric Xing @ CMU, 2015

A CNN transforms the
image to 4096
numbers that are then
linearly classified.

54

Visualize and Understand CNN

© Eric Xing @ CMU, 2015

• Find images that maximize some class score:

Yes, Google
Inceptionism! 55

Visualize and Understand CNN

© Eric Xing @ CMU, 2015

• More visualizations

https://www.youtube.com/watch?v=AgkfIQ4I
GaM&feature=youtu.be

56

Limitations

© Eric Xing @ CMU, 2015

• Supervised Training
• Need huge amount of labeled data, but label is

scarce!
• Slow Training

• Train an AlexNet on a single machine need one
week!

• Optimization
• Highly nonconvex objective

• Parameter tuning is hard
• The parameter space is so large…

57

Summary

© Eric Xing @ CMU, 2015

• Neural network with specialized connectivity structure
• Stack multiple stages of feature extractors
• Higher stages compute more global, more invariant

features
• Classification layer at the end

Slide courtesy, Rob Fergus58

Summary

© Eric Xing @ CMU, 2015

• Feed-forward
• Convolve input
• Non-linearity (rectified linear)
• Pooling (local max, mean)

• Supervised
• Train convolutional filter s by back-propagation

classification error at the end

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

59

Further reading
 Andrej Karpathy: The Unreasonable Effectiveness of

Recurrent Neural Networks
(http://karpathy.github.io/2015/05/21/rnn-effectiveness)

 Recurrent Neural Networks Tutorial
(http://www.wildml.com/2015/09/recurrent-neural-networks-
tutorial-part-1-introduction-to-rnns)

© Eric Xing @ CMU, 2015 60

