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Courtesy: Lee and Ng

A perennial challenge in computer 
vision: feature engineering 

SIFT Spin image

HoG RIFT

Textons GLOH

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning
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Automatic feature learning?
 Successful learning of intermediate representations 

[Lee et al ICML 2009, Lee et al NIPS 2009]
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“Deep” models
 Neural Networks: Feed-forward*

 You have seen it 

 Autoencoders (multilayer neural net with target output = input)
 Non-probabilistic -- Directed: PCA, Sparse Coding
 Probabilistic -- Undirected: MRFs and RBMs*

 Convolutional Neural Nets
 Recursive Neural Networks*
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Local Computation At Each Unit
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Deep Neural Network
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Activation Functions

Sigmoid Tanh Rectified Linear

• Applied on the hidden units
• Achieve nonlinearity 
• Popular activation functions
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Loss Functions

• Squared loss for regression 
ଶ

• Cross entropy loss for classification

௞ ௞
௄
௞ୀଵ ௞

ୣ୶୮	ሺ௬ೖሻ
∑ ୣ୶୮	ሺ௬ೕሻ಼
ೕసభ

Prediction True value

Class label
Prediction

© Eric Xing @ CMU, 2015 9



Neural Network Prediction
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• Compute unit values layer by layer in a forward 
manner

• Prediction function
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Training

• Gradient descent
• Back-Propagation (BP)

• A routine to compute gradient
• Use chain rule of derivative
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Linear combination 
value ௝ܽ ൌ ∑ ௜௜ݖ௝௜ݓ

Neural Network Training
• Goal: compute gradient

ܮ߲
௜௝ݓ߲

• Apply chain rule
ܮ߲
௝௜ݓ߲

ൌ
ܮ߲
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௝௜ݓ
ܮ߲
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ܮ߲
߲ܽ௞

߲ܽ௞
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jiw

Training loss
Weight between unit ݅ and ݆

kz

jz

iz

Called error, computed 
recursively in a 

backward manner
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Neural Network Training
• Apply chain rule (cont’d)

߲ ௝ܽ

௝௜ݓ
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ൌ ᇱሺߪ௞௝ݓ ௝ܽሻ

gradient= డ௅
డ௪ೕ೔

ൌ డ௅
డ௔ೕ

డ௔ೕ
௪ೕ೔

=backward error x forward activation

• Pseudo code of BP

jiw

kz

jz

iz

Derivative of activation 
function

While not converge
1. compute forward activations
2. compute backward errors
3. compute gradients of weights
4. perform gradient descent
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Pretraining
• A better initialization strategy of weight parameters

• Based on Restricted Boltzmann Machine
• An auto-encoder model 
• Unsupervised
• Layer-wise, greedy

• Useful when training data is limited
• Not necessary when training data is rich
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Restricted Boltzmann Machine
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Layer-wise Unsupervised Pre-
training

Input ...

Features ...
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Layer-wise Unsupervised Pre-
training

Input ...

Features ...

Reconstruction
of input

... ... Input
?
=
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Auto-encoder:



Layer-wise Unsupervised Pre-
training

Input ...

Features ...
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Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract 
features

...
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Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract 
features
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of features
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?
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Auto-encoder:



Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract 
features

...
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Layer-wise Unsupervised Pre-
training

Input ...

Features ...

More abstract 
features

...

Even more abstract 
features

...
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Supervised Fine-Tuning
• Use the weights learned in unsupervised pretraining to 

initialize the network
• Then run BP in supervised setting
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Convolutional Neural Network

 Some contents are borrowed from Rob Fergus, Yan Lecun and Stanford’s course

© Eric Xing @ CMU, 2015 30



Ordinary 
Neural 

Network

Now

Figure courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2015 31



All Neural Net 
activations 
arranged in 3 
dimensions

For example, a CIFAR-10 image is a 32*32*3 volume: 32 
width, 32 height, 3 depth (RGB)

Figure courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2015 32



Local connectivity

© Eric Xing @ CMU, 2015

32

32

3

image: 32 * 32 * 3 volume

before: full connectivity: 
32 * 32 * 3 weights for each 
neuron

now: one unit will connect 
to, e.g. 5*5*3 chunk and 
only have 5*5*3 weights

Note the connectivity is:
- local in space
- full in depth
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Convolution

© Eric Xing @ CMU, 2015

• One local region only gives one output
• Convolution: Replicate the column of hidden units 

across space, with some stride

• 7 * 7 Input 
• Assume 3*3 connectivity, 

stride = 1

• Produce a map
• What’s the size of the map? 

5 * 5
34



Convolution

© Eric Xing @ CMU, 2015

• One local region only gives one output
• Convolution: Replicate the column of hidden units 

across space, with some stride

• 7 * 7 Input 
• Assume 3*3 connectivity, 

stride = 1

• What if stride = 2? 
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Convolution

© Eric Xing @ CMU, 2015

• One local region only gives one output
• Convolution: Replicate the column of hidden units 

across space, with some stride

• 7 * 7 Input 
• Assume 3*3 connectivity, 

stride = 1

• What if stride = 3? 

36



Convolution: In Practice

© Eric Xing @ CMU, 2015

• Zero Padding
• Input size: 7 * 7
• Filter Size: 3*3, stride 1
• Pad with 1 pixel border

• Output size?
• 7 * 7 => preserved size!

Slide courtesy, Fei-Fei, Andrej Karpathy37



Convolution: Summary
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• Zero Padding
• Input volume of size [W1 * H1 * D1]
• Using K units with receptive fields F x F and applying them at 

strides of S gives
Output volume: [W2, H2, D2]

• W2 = (W1 – F)/S + 1
• H2 = (H1 - F) / S + 1
• D2 =k

Slide courtesy, Fei-Fei, Andrej Karpathy
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Convolution: Problem

© Eric Xing @ CMU, 2015

• Assume input [32 * 32 * 3]
• 30 units with receptive field 5 * 5, applied at stride 

1/pad 1
=> Output volume: [30 * 30 * 30] 

At each position of the output volume, we need 5 * 5 * 3 
weights

=> Number of weights in such layer: 27000 * 75 = 2 
million 

Idea: 
Weight sharing!

Learn one unit, let the unit 
convolve across all local 
receptive fields!
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Convolution: Problem

© Eric Xing @ CMU, 2015

• Assume input [32 * 32 * 3]
• 30 units with receptive field 5 * 5, applied at stride 1/pad 1

=> Output volume: [30 * 30 * 30]  = 27000 units

Weight sharing
=> Before:  Number of weights in such layer: 27000 * 75 = 2 

million 
=> After: weight sharing: 30 * 75 = 2250 

But also note that sometimes it’s not a good idea to do 
weight sharing! When? 
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Convolutional Layers
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• Connect units only to local receptive fields
• Use the same unit weight parameters for units in each “depth 

slice” (i.e. across spatial positions)

Can call the units “filters”

We call the layer convolutional because 
it is related to convolution of two signals

Short question:  Will convolution layers 
introduce nonlinearity?

Sometimes we also add a bias term b, y = Wx + b, 
like what we have done for ordinary NN

41



Stacking Convolutional Layers
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Pooling Layers

© Eric Xing @ CMU, 2015

• In ConvNet architectures, Conv layers are often 
followed by Pool layers

• makes the representations smaller and more manageable 
without losing too much information. Computes MAX 
operation (most common)

Slide courtesy, Fei-Fei, Andrej Karpathy
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Pooling Layers

© Eric Xing @ CMU, 2015

• In ConvNet architectures, Conv layers are often 
followed by Pool layers

• makes the representations smaller and more manageable 
without losing too much information. Computes MAX 
operation (most common) 

• Input volume of size [W1 x H1 x D1] 
• Pooling unit receptive fields F x F and applying them at 

strides of S gives 
• Output volume: [W2, H2, D1]: depth unchanged!

W2 = (W1-F)/S+1, 
H2 = (H1-F)/S+1 

Short question: Will pooling layer introduce nonlinearity?  
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Nonlinerity
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• Similar to NN, we need to introduce nonlinearity in 
CNN

• Sigmoid
• Tanh
• RELU: Rectified Linear Units  -> preferred

• Simplifies backpropagation 
• Makes learning faster 
• Avoids saturation issues

Slide courtesy, Yan Lecun45



Convolutional Networks: 1989

LeNet: a layered model composed of 
convolution and subsampling operations 
followed by a holistic representation and 
ultimately a classifier for handwritten digits. 
[ LeNet ]

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2015 46



Convolutional Nets: 2012

AlexNet: a layered model composed of 
convolution, subsampling, and further 
operations followed by a holistic 
representation and all-in-all a landmark 
classifier on
ILSVRC12. [ AlexNet ]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2015 47



Convolutional Nets: 2014

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-

scale dimension-reduced modules 
(pictured)

- VGG: 16 layers of 3x3 convolution 
interleaved with max pooling + 3 
fully-connected layers 

+ depth
+ data
+ dimensionality reduction

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2015 48



Training CNN: Use GPU
 Convolutional layers

 Reduce parameters BUT Increase computations

 FC layers
 each neuron has more weights 
 but less computations

 Conv layers
 each neuron has less weights
 but more computations. Why?

because of weight sharing! 
it will convolve at every position!

GPU is good 
at 

convolution!
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Training CNN: depth cares!

 21 Layers!

 Gradient vanishes when the network is too deep: Lazy to learn!

 Add intermediate loss layers to produce error signals!
 Do contrast normalization after each conv layer!
 Use ReLU to avoid saturation!
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Training CNN: Huge model needs 
more data!

 Only 7 layers, 60M parameters!
 Need more labeled data to train! 
 Data augmentation: crop, translate, rotate, add noise!
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Training CNN: highly nonconvex 
objective

 Demand more advanced optimization techniques 

 Add momentum as we have done for NN

 Learning rate policy
 decrease learning rate regularly!
 different layers use different learning rate!
 observe the trend of objective curve more often!

 Initialization really cares!
 Supervised pretraining
 Unsupervised pretraining
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Training CNN: avoid overfitting

 More data are always the best way to avoid overfitting
 data augmentation 

 Add regualizations: recall what we have done for linear 
regression

 Dropout
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Visualize and Understand CNN

© Eric Xing @ CMU, 2015

A CNN transforms the 
image to 4096 
numbers that are then 
linearly classified. 
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Visualize and Understand CNN

© Eric Xing @ CMU, 2015

• Find images that maximize some class score: 

Yes, Google 
Inceptionism! 55



Visualize and Understand CNN

© Eric Xing @ CMU, 2015

• More visualizations

https://www.youtube.com/watch?v=AgkfIQ4I
GaM&feature=youtu.be

56



Limitations
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• Supervised Training
• Need huge amount of labeled data, but label is 

scarce!
• Slow Training

• Train an AlexNet on a single machine need one 
week!

• Optimization
• Highly nonconvex objective

• Parameter tuning is hard
• The parameter space is so large…
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Summary

© Eric Xing @ CMU, 2015

• Neural network with specialized connectivity structure
• Stack multiple stages of feature extractors
• Higher stages compute more global, more invariant 

features
• Classification layer at the end

Slide courtesy, Rob Fergus58



Summary

© Eric Xing @ CMU, 2015

• Feed-forward
• Convolve input
• Non-linearity (rectified linear)
• Pooling (local max, mean)

• Supervised 
• Train convolutional filter s by back-propagation 

classification error at the end

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps
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Further reading
 Andrej Karpathy: The Unreasonable Effectiveness of 

Recurrent Neural Networks  
(http://karpathy.github.io/2015/05/21/rnn-effectiveness)

 Recurrent Neural Networks Tutorial 
(http://www.wildml.com/2015/09/recurrent-neural-networks-
tutorial-part-1-introduction-to-rnns)
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