Machine Learning

10-701, Fall 2015

Support Vector Machines

Reading: Chap. 6&7, C.B book, and listed papers
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What is a good Decision

Boundary?

Consider a binary classification
task with y = £1 labels (not 0/1 as
before).

When the training examples are
linearly separable, we can set the
parameters of a linear classifier
so that all the training examples
are classified correctly

Many decision boundaries!
e Generative classifiers
e Logistic regressions ...

Are all decision boundaries
equally good?
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Not All Decision Boundaries Are
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e \Why we may have such boundaries?

Irregular distribution
Imbalanced training sizes
outliners
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e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:

"—Wf >\% i
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Classification and Margin o°

e Parameterzing decision boundary

e Letw denote a vector orthogonal to the decision boundary, and » denote a scalar
"offset" term, then we can write the decision boundary as:
w' b
— X+ i
-
e Margin

(WixAb)/||w|| > +c/|\w|| for all x; in class 2
(wixAb)!||\w|| < —cl||\w]|| for all x; in class 1

O
L] o Class 2 Or more compactly:
as B (Whx*b)y,/||wl| >el|wi
= O ] . .
Class 1 d/ ./d'+ Thear’nargc;lln between any two points
—_ > m =4 + + —
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. . e 1T
Maximum Margin Classification o
e The minimum permissible margin is:
m = W (x — X ):2 2V
I w1
e Here is our Maximum Margin Classification problem:
[
max ., o C?(f M

< [

sty (x4 5wl 2 e, i )
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Maximum Margin Classification, cece

o000
con'd. o
e The optimization problem:
C
MaX wb M
S.1

y.(wx, +b)>c, Vi

e But note that the magnitude of ¢ merely scales w and b, and does
not change the classification boundary at all! (why?)

e So we instead work on this cleaner problem:

1

ﬁ gntax w,b M
| y.(w'x +b)>1, Vi

e The solution to this leads to the famous Gu hines—
-- believed by many to be the best "off-the-shelf" supervised learning

algorithm
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Support vector machine 4

e A convex quadratic programming problem
with linear constrains:

1

R\

y,(w'x, +b)>1, IVi

e The attained margin is now given by M

MaxX
S.t

e Only a few of the classification constraints are relevant = support vectors

e Constrained optimization

e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.

=>» deeper insight: support vectors, kernels ...

=>» more efficient algorithm
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Digression to Lagrangian Duality | ¢

e The Primal Problem
min_ f(w)
s.t. g w) <0, i=1,...,k
h(w)=0, i=1,...,1

The generalized Lagrangian:

L(w,a,p)= f(W)+Za g,(W)+Zﬂlh,(W)
=
the o's (¢ 20) and f's are called the Lagarangian multipliers

94) >0

Primal:

Lemma: _ o _ _
f(w) if wsatisfies primal constraints

max,, s, -0 L(w,a,p)= { .

o/w

A re-written Primal:
min, max, , ..o £(w,a,p)
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Lagrangian Duality, cont. o

e Recall the Primal Problem:

min, max, , .o £(wa,p)

e [he Dual Problem:
max, ;..o Min, £(wa,p)

a/mlféy g4 :

e Theorem (weak duality): f’*’ 'IL“’

J* = max, ;,soMN, L(w,a,f) < min max, ;. .o £(wa,p)= »

e Theorem (strong duality):
Iff there exist a saddle point of £(w,«, ), we have
d* _ p*
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A sketch of strong and weak cece

duality L= )t hw) o

e Now, ignoring /(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d =ma 50 min, f(w)+a'g(w) < min, max, ., fw+a'gw)=p

W&W’ )t Lu‘ qc@/t)) (Qo 9(}/4)

4—‘10(
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A sketch of strong and weak cece

duality o

e Now, ignoring A(x) for simplicity, let's look at what's happening
graphically in the duality theorems.

d" =max, omin, f(w)+a'g(w) < min max,., f(w)+a'g(w)=p

J(w)
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The KKT conditions ot

e If there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)

conditions:

0 :
—L(wa,p)=0, i=1..,k
ow,

0 .
—L(w,a,p)=0, i=1...,1
op,

;8 (w)=0, i=1...,m Complementary slackness
g (W) <0, i=1....m Primal feasibility
a, 20, i=1..,m Dual feasibility

e Theorem: If w*, " and f* satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.
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Solving optimal margin classifier |s¢

e Recall our opt problem:
1

T

y,(w'x, +b)>1, Vi

maXx
S.t

e Thisis equivalent to
1

min,, —ww

e (*)
1-y.(w'x,+b)<0, Vi

e \Write the Lagrangian:

S.t

L(w,b,a)= %WTW— Zm: a [)/,- (w'x, +b) —1]
=1

e Recall that (*) can be reformulated as min, , max,, ., £(w,b,a)
Now we solve its dual problem: max ., min , .£(w,b,«a)
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1 m 0000
L(w,b,a)= EWTW—Zai[yi(wai +b)—1] it
The Dual Problem - 4
max,, .o min, , £(w,b,a) WX
| Wy’
e \We minimize .£ with respect to w and b first: =0
vV, L(wba)=w- \ a.y.x, =0, (
2 ) (¢)
V,L(wb,a)= i%% =0, (%%)
i=1
Note that (*) implies: w= iaiyixi (***)
i=1

e Plug (***) back to .£ , and using (**), we have:

m 1 m
'£(W’b’a):;ai_gzaiajyiyj(xzrxj)

i, j=1
© Eric Xing @ CMU, 2006-2015 15



eooo
HE
The Dual problem, cont. 4
e Now we have the following dual opt problem:
maXOtj(a):iai_liaiajyiyj(xzrxj)
i=1 2i,j:1 O v
st. «, 20, i=1,...,k \ "

e({j(xa‘ )20
_—

N oy =0,
;alyl /4

e Thisis, (again,) a quadratic program
A global maximum of o, can always be foung-
e But what's the big deal??

e Note two things:

g problem.

m
. wcan be recovered by = Z oYX, See next ..
— =l
T
2. The "kernel" X X, More later ...
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Support vectors oo

e Note the KKT condition --- only a few «;'s can be nonzero!!

o.g (w)=0, i=1...,m

Class 2 Call the training data points
015=0.6 @§t10=0 whose ¢;'s are nonzero the
@) / support vectors (SV)
¢=0 _
=0 L] o
- © =08
0, =0 L]
= - (16:1.4 WTX+ b= 1
0y=0 B T .
Class 1 a0 WX +b6=0

wlx —l—'b = -1
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Support vector machines -

e Once we have the Lagrange multipliers {a;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

W= a,; VX,
ieSY,

e For testing with a new data z 9
e Compute
w'z+h Zai)@b % o
eSSy —

and classify zZ as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly
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Interpretation of support vector T
machines oo

e The optimal W is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of KNN classifier

e To compute the weights {«;}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples X; X ;

e \We make decisions by comparing each new example Z with
only the support vectors:

y* = sign[Zaiyi(xfz)Jr bj

ieSV
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(1) see:

Non-linearly Separable Problems | &2

5. @)
.j/' Q Class 2
Xj‘
W O
O X ©
= o £
o ’ wix+b=1
T —
Class 1 R XxX+b=0

wlx +'b = -1

e \We allow “error” &; in classification; it is based on the output of
the discriminant function w’x+b

e ¢ approximates the number of misclassified samples
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Soft Margin Hyperplane

e Now we have a slightly different opt problem:

&; are “slack variables” in optimization

Note that £=0 if there is no error for X,

&; is an upper bound of the number of errors

C : tradeoff parameter between error and margin
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(2) Non-linear Decision Boundary | s:

e So far, we have only considered large-margin classifier with a
linear decision boundary B

e How to generalize it to become nonlinear? W

e Key idea: transform x; to a higher dimensional space to “make
life easier”
e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

e \Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)
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Transforming the Data

Input space

© Eric Xing @ CMU, 2006-2015
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| oup L)t B
The Kernel Trick 3 | e°
e Recall the SVM optimization problem f» I (ax)

a,a;y,y; (Xz'TXj)

max,, ](a)zzm:ai_l
i=1 21,]1

1 -.
st 0<a,<C, i=1...,m ‘Fw‘l) Slé(ﬂj,
Yy =0 = ks %)

e The data points only appear as inner product

m ]

e As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

e Many common geometric operations (angles, distances) can
be expressed by inner products

e Define the kernel function K by K(x,,x;)=¢(x,) ¢(x,)
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An Example for feature mapping | ss2:

and kernels oo

e Consider an input x=[x,,x,]
e Suppose & .) is given as follows

¢@? D :(1, \/§x1 , \/Exz , xl2 , x22 : \/Exlx2 )

e An inner product in the feature space is

<¢@ Dﬂ D> 12X b2 e R ek

X2 X2 Vo
e T 22X K

e So, if we define the kernel fuﬁcti@h‘fa&ﬂ)ﬂ‘&/\/)s‘f there is no
need to carry out ¢(.) explicitly

K(x,X'") (1 + xTx')2
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More examples of kernel i
functions oo

e Linear kernel (we've seen it)

K(x,x')=x"x' CEU e

e Polynomial kernel (we just saw an example) b
&) &/L@f
K(x,x)=1+x"x' 74

where p = 2, 3, ... To get the feature vectors we concatenate all pth order
polynomial terms of the components of x (weighted appropriately)

2j
In this case the feature space consists of functions and results in a non-
parametric classifier.

e Radial basis kernel
K(x,X') = exp(—;x—x'
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The essence of kernel :

e Feature mapping, but “without paying a cost”
e E.g., polynomial kernel
K(x,2)= (2724 ¢)?
e How many dimensions we’ve got in the new space?
e How many operations it takes to compute K()?

e Kernel design, any principle?
e K(x,z) can be thought of as a similarity function between x and z
e This intuition can be well reflected in the following “Gaussian” function
(Similarly one can easily come up with other K() in the same spirit)

|l — =)°
K(x,z) =exp | —
( ? ) p ( 202 )
e Is this necessarily lead to a “legal” kernel?
(in the above particular case, K() is a legal one, do you know how many
dimension #(x) is?
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Kernel matrix o2

e Suppose for now that K is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., x,, we can
compute an mxm matrix K = {K; ;}, where I; ; = ¢(x;) é(z;)

e This is called a kernel matrix!

e Now, if a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it
must satisfy:

e Symmetry K=KT
proof Ki; = ¢(z:) o(x;) = d(z;) d(x:) = K,
e Positive —semidefinite yTKy >0 Yy
proof?
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Mercer kernel oo

Theorem (Mercer): Let K: R" x R” — R be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {x;,...,xm}, (m < o0), the corresponding kernel matrix
1s symmetric positive semi-denite.
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SVM examples o

i R 0 0.5 1 15 ot [ —y> 0 0.5 1 15 2

[

4" order polynomial 8" order polynomial
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Examples for Non Linear SVMs —
Gaussian Kernel

Linear
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(3) The Optimization Problem ot

e The dual of this new constrained optimization problem is

max, j(a):Zai_zzaiajyiyj(xzrxj)
i=1

i, j=1

st. 0<eg, <C, i=1,..., m

i a;y; = 0.
i=1

e This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on ¢,
now

e Once again, a QP solver can be used to find o,
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The SMO algorithm -

e Consider solving the unconstrained opt problem:

mng(al,ag, ey Q)

e \We've already see three opt algorithms!
o« ?
o« ?
o« ?

e Coordinate ascend:
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Coordinate ascend °°
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Sequential minimal optimization ot

e Constrained optimization:

max, ](a):Zai_zzaiajyiyj(xzrxj)
i=1

i, j=1

st. 0<eg, <C, i=1,..., m

i a,y, =0.
i=1

e Question: can we do coordinate along one direction at a time
(i.e., hold all i fixed, and update «;?)
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The SMO algorithm o

Repeat till convergence

1. Select some pair ¢; and a; to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Re-optimize J(«) with respect to ¢; and ¢;, while holding all the other
o, 's (k # i, j) fixed.

Will this procedure converge?
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Convergence of SMO -

m 1 m
max, ](a)zzai_Ezaiajyiyj(xiTXj)
i=1

i,j=1

st. 0<ea,<C, i=1...k

i oV, = 0.
i=1

KKT:

e Let'shold a;,..., @, fixed and reopt Jw.rt. &, and «,
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Convergence of SMO

e [he constraints:

a'),(”___ U.:}"('- )=';

a1y1 + oy = §
0 S a1 S C "
0 S a9 S C
e The objective: L
‘7(06170»’23 ‘e a@’m) — j((f - QQQ‘Z)?JlaCYQa .o

e Constrained opt:
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Cross-validation error of SVM ot

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors
# of training examples

Leave-one -out CV error=
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Summary

e Max-margin decision boundary

e Constrained convex optimization

Duality

The KTT conditions and the support vectors

Non-separable case and slack variables

The kernel trick

The SMO algorithm
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