Machine Learning

10-701, Fall 2015

Support Vector Machines

Eric Xing

Lecture 9, October 8, 2015

Reading: Chap. 6&7, C.B book, and listed papers

What is a good Decision Boundary?

- Consider a binary classification task with y = ±1 labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
 - Generative classifiers
 - Logistic regressions ...
- Are all decision boundaries equally good?

Not All Decision Boundaries Are Equal!

- Why we may have such boundaries?
 - Irregular distribution
 - Imbalanced training sizes
 - outliners

$\sqrt[3]{|w|} = \sqrt[3]{|w|}$ $\forall x \in \mathbb{R}^{\times}$ Classification and Margin

- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

Classification and Margin

- Parameterzing decision boundary
 - Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

$$(w^Tx_i+b)/||\mathbf{w}|| > +c/||\mathbf{w}||$$
 for all x_i in class 2 $(w^Tx_i+b)/||\mathbf{w}|| < -c/||\mathbf{w}||$ for all x_i in class 1

Or more compactly:

$$(w^T x_i + b) y_i / ||w|| > c / ||w||$$

The margin between any two points

$$m = d^- + d^+ =$$

Maximum Margin Classification

The minimum permissible margin is:

$$m = \frac{w^{T}}{\|w\|} \left(x_{i^{*}} - x_{j^{*}} \right) = \frac{2c}{\|w\|} > \mathbf{V}$$

Here is our Maximum Margin Classification problem:

$$\max_{w} \frac{2c}{\|w\|}$$
s.t $y_i(w^Tx_i + b)/\|w\| \ge c/\|w\|$, $\forall i$

Maximum Margin Classification, con'd.

The optimization problem:

$$\max_{w,b} \frac{c}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge c, \quad \forall i$$

- But note that the magnitude of c merely scales w and b, and does not change the classification boundary at all! (why?)
- So we instead work on this cleaner problem:

$$\begin{array}{ccc}
& \max_{w,b} & \frac{1}{\|w\|} \\
\text{s.t} & y_i(w^T x_i + b) \ge 1, \quad \forall i
\end{array}$$

The solution to this leads to the famous <u>Support Vector Machines</u>
 believed by many to be the best "off-the-shelf" supervised learning algorithm

Support vector machine

A convex quadratic programming problem with linear constrains:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^Tx_i + b) \ge 1, \quad \forall i$$
The attained margin is now given by
$$\frac{1}{\|w\|}$$

- Only a few of the classification constraints are relevant -> support vectors
- Constrained optimization
 - We can directly solve this using commercial quadratic programming (QP) code
 - But we want to take a more careful investigation of Lagrange duality, and the solution of the above in its dual form.
 - → deeper insight: support vectors, kernels ...
 - → more efficient algorithm

Digression to Lagrangian Duality

The Primal Problem

Primal:

min_w
$$f(w)$$

s.t. $g_i(w) \le 0$, $i = 1,...,k$
 $h_i(w) = 0$, $i = 1,...,l$

The generalized Lagrangian:

$$\mathcal{L}(w,\alpha,\beta) = \underline{f(w)} + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

the α 's $(\alpha \ge 0)$ and β 's are called the Lagarangian multipliers

Lemma:

$$\max_{\alpha,\beta,\alpha_i \ge 0} \mathcal{L}(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{o/w} \end{cases}$$

A re-written Primal:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\alpha,\beta)$$

Lagrangian Duality, cont.

Recall the Primal Problem:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} \mathcal{L}(w,\alpha,\beta)$$

• The Dual Problem:

$$\max_{\alpha,\beta,\alpha_i\geq 0} \min_{w} \mathcal{L}(w,\alpha,\beta)$$

• Theorem (weak duality):

$$d^* = \max_{\alpha, \beta, \alpha_i \ge 0} \min_{w} \mathcal{L}(w, \alpha, \beta) \le \min_{w} \max_{\alpha, \beta, \alpha_i \ge 0} \mathcal{L}(w, \alpha, \beta) = p^*$$

• Theorem (strong duality):

Iff there exist a saddle point of $\mathcal{L}(w,\alpha,\beta)$, we have

$$d^* = p^*$$

A sketch of strong and weak duality

• Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

 $d^* = \max_{\alpha_i \ge 0} \min_{w} f(w) + \alpha^T g(w) \le \min_{w} \max_{\alpha_i \ge 0} f(w) + \alpha^T g(w) = p^*$

A sketch of strong and weak duality

• Now, ignoring h(x) for simplicity, let's look at what's happening graphically in the duality theorems.

$$d^* = \max_{\alpha_i \ge 0} \min_{w} f(w) + \alpha^T g(w) \le \min_{w} \max_{\alpha_i \ge 0} f(w) + \alpha^T g(w) = p^*$$

The KKT conditions

 If there exists some saddle point of \(\mathcal{L} \), then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\begin{split} \frac{\partial}{\partial w_i} \mathcal{L}(w,\alpha,\beta) &= 0, \quad i = 1, \dots, k \\ \frac{\partial}{\partial \beta_i} \mathcal{L}(w,\alpha,\beta) &= 0, \quad i = 1, \dots, l \\ \alpha_i g_i(w) &= 0, \quad i = 1, \dots, m \\ g_i(w) &\leq 0, \quad i = 1, \dots, m \end{split} \qquad \text{Complementary slackness} \\ g_i(w) &\leq 0, \quad i = 1, \dots, m \end{split} \qquad \text{Primal feasibility} \\ \alpha_i &\geq 0, \quad i = 1, \dots, m \end{split} \qquad \text{Dual feasibility}$$

• **Theorem**: If w^* , α^* and β^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

Recall our opt problem:

$$\max_{w,b} \frac{1}{\|w\|}$$
s.t
$$y_i(w^T x_i + b) \ge 1, \quad \forall i$$

This is equivalent to

$$\min_{w,b} \frac{1}{2} w^T w$$
s.t
$$1 - y_i (w^T x_i + b) \le 0, \quad \forall i$$

Write the Lagrangian:

$$\mathcal{L}(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{i=1}^m \alpha_i \left[y_i (w^T x_i + b) - 1 \right]$$

• Recall that (*) can be reformulated as $\min_{w,b} \max_{\alpha_i \geq 0} \mathcal{L}(w,b,\alpha)$ Now we solve its **dual problem**: $\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$

$\mathcal{L}(w,b,\alpha) = \frac{1}{2}w^Tw - \sum_{i=1}^{m} \alpha_i [y_i(w^Tx_i + b) - 1]$ The Dual Problem

$$\max_{\alpha_i \geq 0} \min_{w,b} \mathcal{L}(w,b,\alpha)$$

WX +5 V'X'=0

• We minimize \mathcal{L} with respect to w and b first:

$$\nabla_{w} \mathcal{L}(w, b, \alpha) = w - \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} = 0, \qquad (*)$$

$$\nabla_b \mathcal{L}(w, b, \alpha) = \sum_{i=1}^m \alpha_i y_i = 0, \qquad (**)$$

Note that (*) implies:
$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
 (***)

Plug (***) back to £, and using (**), we have:

$$\mathcal{L}(w,b,\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

The Dual problem, cont.

Now we have the following dual opt problem:

$$\max_{\alpha} \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t. $\alpha_{i} \geq 0$, $i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- This is, (again,) a quadratic programming problem.
 - A global maximum of α_i can always be found.
 - But what's the big deal??
 - Note two things:

1.
$$w$$
 can be recovered by

$$\underline{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$

See next ...

2. The "kernel"

$$\mathbf{x}_{i}^{T}\mathbf{x}_{j}$$

More later ...

Support vectors

• Note the KKT condition --- only a few α_i 's can be nonzero!!

$$\alpha_i g_i(w) = 0, \quad i = 1, \dots, m$$

Call the training data points whose α_i 's are nonzero the support vectors (SV)

Support vector machines

Once we have the Lagrange multipliers $\{\alpha_i\}$, we can reconstruct the parameter vector \boldsymbol{w} as a weighted combination of the training examples:

$$w = \sum_{i \in SV} \alpha_i y_i \mathbf{X}_i$$

For testing with a new data z

Compute

and classify z as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly

Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights $\{\alpha_i\}$, and to use support vector machines we need to specify only the inner products (or kernel) between the examples $\mathbf{x}_i^T \mathbf{x}_j$
- We make decisions by comparing each new example z with only the support vectors:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i \left(\mathbf{x}_i^T z\right) + b\right)$$

(1)

Non-linearly Separable Problems

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function w^Tx+b
- ξ_i approximates the number of misclassified samples

Now we have a slightly different opt problem:

- ξ_i are "slack variables" in optimization
- Note that ξ_i=0 if there is no error for x_i
- ξ_i is an upper bound of the number of errors
- C: tradeoff parameter between error and margin

(2) Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point x_i are located
 - Feature space: the space of $\phi(\mathbf{x}_i)$ after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of x₁x₂ make the problem linearly separable (homework)

Note: feature space is of higher dimension than the input space in practice

exp (xi-xi)

The Kernel Trick

Recall the SVM optimization problem

max
$$_{\alpha}$$
 $\mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$
s.t. $0 \le \alpha_{i} \le C$, $i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

$$= \mathcal{K}(\mathbf{x}_{i}) \mathbf{y}_{i}$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

An Example for feature mapping and kernels

- Consider an input $\mathbf{x} = [x_1, x_2]$
- Suppose $\phi(.)$ is given as follows

$$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \left(1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2\right)$$

An inner product in the feature space is

$$\left\langle \phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right), \phi\left(\begin{bmatrix} x_1' \\ x_2' \end{bmatrix}\right) \right\rangle = 1 + 2\chi_1 \chi_1' + 2\chi_1 \chi_2' + \chi_1' \chi_1' + \chi_1' \chi_1' + \chi_1' \chi_2'$$

$$= 2\chi_1 \chi_1 \chi_2'$$

So, if we define the kernel function table of the second o

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^2$$

More examples of kernel functions

Linear kernel (we've seen it)

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Polynomial kernel (we just saw an example)

mple)
$$\frac{\Phi(1)}{\Phi(1)} U(1)$$
 $U(1)$
 $U(1)$
 $U(1)$
 $U(1)$
 $U(1)$
 $U(1)$

$$K(\mathbf{x}, \mathbf{x}') = \left(\mathbf{1} + \mathbf{x}^T \mathbf{x}'\right)^p$$

where p = 2, 3, ... To get the feature vectors we concatenate all pth order polynomial terms of the components of x (weighted appropriately)

Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right)$$

In this case the feature space consists of functions and results in a nonparametric classifier.

The essence of kernel

- Feature mapping, but "without paying a cost"
 - E.g., polynomial kernel

$$K(x,z) = (x^T z + c)^d$$

- How many dimensions we've got in the new space?
- How many operations it takes to compute K()?
- Kernel design, any principle?
 - K(x,z) can be thought of as a similarity function between x and z
 - This intuition can be well reflected in the following "Gaussian" function (Similarly one can easily come up with other K() in the same spirit)

$$K(x,z) = \exp\left(-\frac{\|x - z\|^2}{2\sigma^2}\right)$$

Is this necessarily lead to a "legal" kernel?
 (in the above particular case, K() is a legal one, do you know how many dimension φ(x) is?

Kernel matrix

- Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ , then for x_1, \ldots, x_m , we can compute an $m \times m$ matrix $K = \{K_{i,j}\}$, where $K_{i,j} = \phi(x_i)^T \phi(x_j)$
- This is called a kernel matrix!
- Now, if a kernel function is indeed a valid kernel, and its elements are dot-product in the transformed feature space, it must satisfy:
 - Symmetry $K=K^T$ proof $K_{i,j}=\phi(x_i)^T\phi(x_j)=\phi(x_j)^T\phi(x_i)=K_{j,i}$
 - Positive –semidefinite $y^T K y \ge 0 \quad \forall y$ proof?

Mercer kernel

Theorem (Mercer): Let $K: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\{x_i, \ldots, x_m\}$, $(m < \infty)$, the corresponding kernel matrix is symmetric positive semi-denite.

SVM examples

Examples for Non Linear SVMs – Gaussian Kernel

(3) The Optimization Problem

The dual of this new constrained optimization problem is

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_i now
- ullet Once again, a QP solver can be used to find $lpha_{
 m i}$

Consider solving the unconstrained opt problem:

$$\max_{\alpha} W(\alpha_1, \alpha_2, \dots, \alpha_m)$$

- We've already see three opt algorithms!
 - ?
 - ?
 - ?
- Coordinate ascend:

Coordinate ascend

Sequential minimal optimization

Constrained optimization:

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t.
$$0 \le \alpha_{i} \le C, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

• Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{[-i]}$ fixed, and update α_i ?)

The SMO algorithm

Repeat till convergence

- 1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Re-optimize $J(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i; j)$ fixed.

Will this procedure converge?

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

• Let's hold α_3 ,..., α_m fixed and reopt J w.r.t. α_1 and α_2

Convergence of SMO

• The constraints:

$$\alpha_1 y_1 + \alpha_2 y_2 = \xi$$

$$0 \le \alpha_1 \le C$$

$$0 \le \alpha_2 \le C$$

$$\mathcal{J}(\alpha_1, \alpha_2, \dots, \alpha_m) = \mathcal{J}((\xi - \alpha_2 y_2) y_1, \alpha_2, \dots, \alpha_m)$$

Constrained opt:

Cross-validation error of SVM

 The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

Leave - one - out CV error =
$$\frac{\text{# support vectors}}{\text{# of training examples}}$$

Summary

- Max-margin decision boundary
- Constrained convex optimization
 - Duality
 - The KTT conditions and the support vectors
 - Non-separable case and slack variables
 - The kernel trick
 - The SMO algorithm