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Reading: Chap. 6&7, C.B book, and listed papers
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What is a good Decision 
Boundary?
 Consider a binary classification 

task with y = ±1 labels (not 0/1 as 
before). 

 When the training examples are 
linearly separable, we can set the 
parameters of a linear classifier 
so that all the training examples 
are classified correctly

 Many decision boundaries!
 Generative classifiers
 Logistic regressions …

 Are all decision boundaries 
equally good?

Class 1

Class 2
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What is a good Decision 
Boundary?
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Not All Decision Boundaries Are 
Equal!

 Why we may have such boundaries?
 Irregular distribution
 Imbalanced training sizes
 outliners
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Classification and Margin
 Parameterzing decision boundary

 Let w denote a vector orthogonal to the decision boundary, and b denote a scalar 
"offset" term, then we can write the decision boundary as:

0
TT

T

w
bx

w
w

Class 1

Class 2

d - d+
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Classification and Margin
 Parameterzing decision boundary

 Let w denote a vector orthogonal to the decision boundary, and b denote a scalar 
"offset" term, then we can write the decision boundary as:

Class 1

Class 2

 Margin

(wTxi+b)/||w|| > +c/||w|| for all xi in class 2
(wTxi+b)/||w|| < c/||w|| for all xi in class 1

Or more compactly:

(wTxi+b)yi /||w|| >c/||w||

The margin between any two points
m = d + d+ =

d - d+
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Maximum Margin Classification
 The minimum permissible margin is:

 Here is our Maximum Margin Classification problem:
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Maximum Margin Classification, 
con'd.
 The optimization problem:

 But note that the magnitude of c merely scales w and b, and does 
not change the classification boundary at all! (why?)

 So we instead work on this cleaner problem:

 The solution to this leads to the famous Support Vector Machines -
-- believed by many to be the best "off-the-shelf" supervised learning 
algorithm
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Support vector machine
 A convex quadratic programming problem

with linear constrains:

 The attained margin is now given by

 Only a few of the classification constraints are relevant  support vectors

 Constrained optimization
 We can directly solve this using commercial quadratic programming (QP) code
 But we want to take a more careful investigation of Lagrange duality, and the 

solution of the above in its dual form. 
 deeper insight: support vectors, kernels …
 more efficient algorithm
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Digression to Lagrangian Duality
 The Primal Problem

Primal:

The generalized Lagrangian:

the 's (≥0) and 's are called the Lagarangian multipliers 

Lemma:

A re-written Primal:
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Lagrangian Duality, cont.
 Recall the Primal Problem:

 The Dual Problem:

 Theorem (weak duality): 

 Theorem (strong duality):
Iff there exist a saddle point of                   , we have
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A sketch of strong and weak 
duality
 Now, ignoring h(x) for simplicity, let's look at what's happening 

graphically in the duality theorems.
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A sketch of strong and weak 
duality
 Now, ignoring h(x) for simplicity, let's look at what's happening 

graphically in the duality theorems.
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A sketch of strong and weak 
duality
 Now, ignoring h(x) for simplicity, let's look at what's happening 

graphically in the duality theorems.
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The KKT conditions
 If there exists some saddle point of L, then the saddle point 

satisfies the following "Karush-Kuhn-Tucker" (KKT) 
conditions:

 Theorem: If w*, * and * satisfy the KKT condition, then it is also a 
solution to the primal and the dual problems.
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Solving optimal margin classifier
 Recall our opt problem:

 This is equivalent to

 Write the Lagrangian:

 Recall that (*) can be reformulated as
Now we solve its dual problem:   
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***(      )

The Dual Problem

 We minimize L with respect to w and b first:

Note that (*) implies: 

 Plug (***) back to L , and using (**), we have:
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The Dual problem, cont.
 Now we have the following dual opt problem:

 This is, (again,) a quadratic programming problem.
 A global maximum of i can always be found. 
 But what's the big deal??
 Note two things:
1. w can be recovered by 

2. The "kernel"
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See next …

More later …
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Support vectors
 Note the KKT condition --- only a few i's can be nonzero!!

miwgα ii ,,1    ,0)( 

6=1.4

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0
7=0

8=0.6

9=0

10=0
Call the training data points 
whose i's are nonzero the 
support vectors (SV) 
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Support vector machines
 Once we have the Lagrange multipliers {i}, we can 

reconstruct the parameter vector w as a weighted combination 
of the training examples:

 For testing with a new data z
 Compute                                                      

and classify z as class 1 if the sum is positive, and class 2 otherwise

 Note: w need not be formed explicitly
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Interpretation of support vector 
machines

 The optimal w is a linear combination of a small number of 
data points. This “sparse” representation can be viewed as 
data compression as in the construction of kNN classifier

 To compute the weights {i}, and to use support vector 
machines we need to specify only the inner products (or 
kernel) between the examples 

 We make decisions by comparing each new example z with 
only the support vectors:
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Non-linearly Separable Problems

 We allow “error” i in classification; it is based on the output of 
the discriminant function wTx+b

 i approximates the number of misclassified samples

Class 1

Class 2
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Soft Margin Hyperplane
 Now we have a slightly different opt problem:

 i are “slack variables” in optimization
 Note that i=0 if there is no error for xi

 i is an upper bound of the number of errors
 C : tradeoff parameter between error and margin
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The Optimization Problem
 The dual of this new constrained optimization problem is

 This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on i 
now

 Once again, a QP solver can be used to find i
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The SMO algorithm
 Consider solving the unconstrained opt problem:

 We’ve already see three opt algorithms! 
 ?
 ?
 ?

 Coordinate ascend:
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Coordinate ascend
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Sequential minimal optimization
 Constrained optimization:

 Question: can we do coordinate along one direction at a time 
(i.e., hold all [-i] fixed, and update i?)
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The SMO algorithm

Repeat till convergence

1. Select some pair i and j to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J() with respect to i and j, while holding all the other 
k 's (k i; j) fixed.

Will this procedure converge?
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Convergence of SMO

 Let’s hold 3 ,…, m fixed and reopt J w.r.t. 1 and 2
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Convergence of SMO
 The constraints:

 The objective:

 Constrained opt:

© Eric Xing @ CMU, 2006-2015



31

Cross-validation error of SVM
 The leave-one-out cross-validation error does not depend on 

the dimensionality of the feature space but only on the # of 
support vectors!

examples  trainingof #
ctorssupport ve #error  CVout -one-Leave 
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Summary
 Max-margin decision boundary

 Constrained convex optimization

 Duality

 The KTT conditions and the support vectors

 Non-separable case and slack variables

 The SMO algorithm
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