
Solution to 10-701/15-781 Midterm Exam
Fall 2004
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1 Introductory Probability and Statistics (12 points)

(a) (2 points) If A and B are disjoint events, and Pr(B) > 0, what is the value of Pr(A|B)?
Answer: 0 ( Note that: A ∧B = ∅ )

(b) (2 points) Suppose that the p.d.f of a random variable X is as follows:

f(x) =
{

4
3 (1− x3), for 0 ≤ x ≤ 1
0, otherwise

Then Pr(X < 0) =?
Answer: 0 ( Note that: 0 ≤ x ≤ 1)

(c) (4 points) Suppose that X is a random variable for which E(X) = µ and V ar(X) = σ2, and let c be
an arbitrary constant. Which one of these statements is true:

A. E[(X − c)2] = (µ− c)2 + σ2 D. E[(X − c)2] = (µ− c)2 + 2σ2

B. E[(X − c)2] = (µ− c)2 E. E[(X − c)2] = µ2 + c2 + 2σ2

C. E[(X − c)2] = (µ− c)2 − σ2 F. E[(X − c)2] = µ2 + c2 − 2σ2

Answer: A

E[(X − c)2] = E[X2]− 2cE[X] + c2 = V ar(X) + [E(X)]2 − 2cµ + c2 = (µ− c)2 + σ2
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(d) (4 points) Suppose that k events B1, B2, ..., Bk form a partition of the sample space S. For i = 1, ..., k,
let Pr(Bi) denote the prior probability of Bi. There is another event A that Pr(A) > 0. Let Pr(Bi|A)
denote the posterior probability of Bi given that the event A has occurred.
Prove that if Pr(B1|A) < Pr(B1), then Pr(Bi|A) > Pr(Bi) for at least one value of i (i = 2, ..., k).
(Hint: one or more of these tricks might help: P (Bi|A)P (A) = P (Bi ∧ A),

∑k
i=1 P (Bi) = 1,∑k

i=1 P (Bi|A) = 1, P (Bi ∧A) + P (Bi ∧ ¬A) = P (Bi),
∑k

i=1 P (Bi ∧A) = P (A))

Answer: We need to prove that if Pr(B1|A) < Pr(B1), then Pr(Bi|A) > Pr(Bi) for at least one
value of i (i = 2, ..., k).

Proof : We know that
∑k

i=1 Pr(Bi) = 1 and
∑k

i=1 Pr(Bi|A) = 1,
Suppose that for all i (i = 2, ..., k), we have Pr(Bi|A) ≤ Pr(Bi), then we can get that∑k

i=1 Pr(Bi) = Pr(B1) +
∑k

i=2 Pr(Bi)
> Pr(B1|A) +

∑k
i=2 Pr(Bi) > Pr(B1|A) +

∑k
i=2 Pr(Bi|A)

So we get that 1 > 1. Confliction!.
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2 Linear Regression (12 points)

We have a dataset with R records in which the ith record has one real-valued input attribute xi and one
real-valued output attribute yi.

(a) (6 points) First, we use a linear regression method to model this data. To test our linear regressor, we
choose at random some data records to be a training set, and choose at random some of the remaining
records to be a test set.
Now let us increase the training set size gradually. As the training set size increases, what do you
expect will happen with the mean training and mean testing errors? (No explanation required)

- Mean Training Error: A. Increase; B. Decrease

- Mean Testing Error: A. Increase; B. Decrease

Answer:

The training error tends to increase. As more examples have to be fitted, it becomes harder to ’hit’,
or even come close, to all of them.

The test error tends to decrease. As we take into account more examples when training, we have more
information, and can come up with a model that better resembles the true behavior. More training
examples lead to better generalization.

(b) (6 points) Now we change to use the following model to fit the data. The model has one unknown
parameter w to be learned from data.

yi ∼ N(log(wxi), 1)

Note that the variance is known and equal to one. (no explanation required) Suppose you decide to
do a maximum likelihood estimation of w. You do the math and figure out that you need w to satisfy
one of the following equations. Which one?

A.
∑

i xi log(wxi) =
∑

i xiyi log(wxi)

B.
∑

i xiyi =
∑

i xiyi log(wxi)

C.
∑

i xiyi =
∑

i xi log(wxi)

D.
∑

i yi =
∑

i log(wxi)

Answer: D.

Very similar with the problem 4 in our homework2, we perform Maximum Likelihood estimation.

yi ∼ N(log(wxi), 1)

We could write the log likelihood as:

LL = log(
n∏

i=1

1√
2πσ

exp(− (yi − log(wxi))2

2σ2
)) =

n∑
i=1

log(
1√
2π

exp(− (yi − log(wxi))2

2
))

∂LL

∂w
= 0 ⇒

∂
∑n

i=1(yi − log(wxi))2

∂w
= 0
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⇒
n∑

i=1

xi

wxi
∗ (yi − log(wxi)) = 0 ⇒

n∑
i=1

yi =
n∑

i=1

log(wxi)

5



3 Decision Trees (11 points)

For this question, you’re going to answer a couple questions regarding the dataset shown below. You’ll be
trying to determine whether Andrew finds a particular type of food appealing based on the food’s tempera-
ture, taste, and size.

Appealing Temperature Taste Size
No Hot Salty Small
No Cold Sweet Large
No Cold Sweet Large
Yes Cold Sour Small
Yes H Sour Small
No H Salty Large
Yes H Sour Large
Yes Cold Sweet Small
Yes Cold Sweet Small
No H Salty Large

(a) (3 points) What is the initial entropy of Appealing?

Answer: 1. (−5/10 · log(5/10)− 5/10 · log(5/10)).

(b) (3 points) Assume that Taste is chosen for the root of the decision tree. What is the information gain
associated with this attribute?

Answer: 3/5. (1− 4/10 · (2/4 · log(2/4) + 2/4 · log(2/4))− 6/10 · 0).

(c) (5 points) Draw the full decision tree learned for this data (without any pruning).

Answer:
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4 K-means and Hierarchical Clustering (10 points)

(a) (6 points) Perform K-means on the dataset given below. Circles are data points and there are two
initial cluster centers, at data points 5 and 7. Draw the cluster centers (as squares) and the decision
boundaries that define each cluster. If no points belong to a particular cluster, assume its center does
not change. Use as many of the pictures as you need for convergence.

Answer:
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(b) (4 points) Give one advantage of hierarchical clustering over K-means clustering, and one advantage
of K-means clustering over hierarchical clustering.

Answer: Many possibilities.

Some advantages of hierarchical clustering:

1. Don’t need to know how many clusters you’re after

2. Can cut hierarchy at any level to get any number of clusters

3. Easy to interpret hierarchy for particular applications

4. Can deal with long stringy data

Some advantages of K-means clustering:

1. Can be much faster than hierarchical clustering, depending on data

2. Nice theoretical framework

3. Can incorporate new data and reform clusters easily
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5 Maximum Likelihood Estimates (9 points)

(a) (9 points) Suppose X1, . . . , Xn are iid samples from U(−w,w) That is,

p(x) =

 0, x < −w
1

2w , −w ≤ x ≤ w
0, x > w

Write down a formula for an MLE estimate of w.

Answer: ŵ = max(|X1|, |X2|, . . . , |Xn|)
Let ŵ denote an MLE estimate of w. From MLE principle ŵ = arg maxw p(X1, . . . , Xn|w).
Since X1, . . . , Xn are iid: ŵ = arg maxw

∏n
i=1 p(Xi|w).

Let XM = max(|X1|, |X2|, . . . , |Xn|).
If w < XM , then

∏n
i=1 p(Xi|w) = 0 from the equation of p(x).

Thus, w ≥ XM .

Given this, we have p(Xi|w) = 1
2w , and thus

ŵ = arg maxw≥XM

∏n
i=1 p(Xi|w)

= arg maxw≥XM

1
(2w)n =

arg maxw≥XM
log( 1

(2w)n ) =
arg maxw≥XM

log1− nlog(2w) =
arg maxw≥XM

−nlog(2w) =
arg minw≥XM

nlog(2w) =
arg minw≥XM

log(w) =
arg minw≥XM

w =
XM
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6 Bayes Classifiers (10 points)

Suppose we are given the following dataset, where A,B,C are input binary random variables, and y is a
binary output whose value we want to predict.

A B C y
0 0 1 0
0 1 0 0
1 1 0 0
0 0 1 1
1 1 1 1
1 0 0 1
1 1 0 1

(a) (5 points) How would a naive Bayes classifier predict y given this input:
A = 0, B = 0, C = 1. Assume that in case of a tie the classifier always prefers to predict 0 for y.

Answer: The classifier will predict 1

P (y = 0) = 3/7;P (y = 1) = 4/7
P (A = 0|y = 0) = 2/3;P (B = 0|y = 0) = 1/3;P (C = 1|y = 0) = 1/3
P (A = 0|y = 1) = 1/4;P (B = 0|y = 1) = 1/2;P (C = 1|y = 1) = 1/2

Predicted y maximizes P (A = 0|y)P (B = 0|y)P (C = 1|y)P (y)
P (A = 0|y = 0)P (B = 0|y = 0)P (C = 1|y = 0)P (y = 0) = 0.0317
P (A = 0|y = 1)P (B = 0|y = 1)P (C = 1|y = 1)P (y = 1) = 0.0357
Hence, the predicted y is 1.

(b) (5 points) Suppose you know for fact that A,B, C are independent random variables. In this case is it
possible for any other classifier (e.g., a decision tree or a neural net) to do better than a naive Bayes
classifier? (The dataset is irrelevant for this question)

Answer: Yes

The independency of A,B,C does not imply that they are independent within each class (in other
words, they are not necessarily independent when conditioned on y). Therefore, naive Bayes classifier
may not be able to model the function well, while a decision tree might.
Thus, for example, y = A XOR B, is an example where A,B might be independent variables, but a
naive Bayes classifier will not model the function well since for a particular class (say, y = 0), A and
B are dependent.
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7 Classification (12 points)

Figures 1, 2 and 3 present points from two different clusters: A (solid points) and B (hollow points). We
would like to learn a classifier that achieves zero training error on this data. To do that we allow each
classifier to divide the data into more than two classes, however, for each classifier there must be a subset
of the classes that perfectly match class A and the complementary set of classes must match cluster B. For
example, in Figure 4 classes 2 and 3 contain all of A’s points and class 1 contains all of B’s points and so
this classification is a legitimate solution to this problem.

(a) (6 points) For a Gaussian Bayes classifier and for each of the three figures state the minimum number
of classes required to achieve the above goal. For all figures you can assume equal class priors, that is
P(A) = P(B).

minimum
number of classes

Figure 1
Figure 2
Figure 3
Figure 4 3

Answer: The number of classes is 2 for all of the cases.

(b) (6 points) For the following figures, do we need a full covariance matrix for the classification or would
a diagonal covariance matrix be enough

Figure 2? Answer: Diagonal is enough. Note that the variance of the two clusters is
different. A has a large variance for both the x and the y axis while B’s variance is low
in both direction. Thus, even though both have the same mean, the variance terms are
enough to separate them.
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Figure 3? Answer: Full is required. In this case, both the mean and the variance terms
are same for both clusters. The only difference is in the covariance terms.
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8 Neural Nets and Regression (12 points)

Suppose we want to learn a quadratic model:

y = w0 + w1x1 + w2x2 + w3x3 + . . . wkxk +
w11x

2
1 + w12x1x2 + w13x1x3 + . . . w1kx1xk +

w22x
2
2 + w23x2x3 + . . . w2kx2xk +

...
...

...
wk−1,k−1x

2
k−1 + wk−1,kxk−1xk +

+ wk,kx2
k

Suppose we have a fixed number of records and k input attributes.

(a) (6 points) In big-O notation what would be the computational complexity in terms of k of learning
the MLE weights using matrix inversion?

Answer: O(k6)

O(k6) since it is O([number of basis functions]3) to solve the normal equations, and the number of
basis functions is 1

2 (k + 1)(k + 2).

(b) (6 points) What would be the computational complexity of one iteration of gradient descent? (The
”batch” gradient descent method, NOT the online method).

Answer: O(k2)

O(k2) since work of computing δk for each datapoint involves 1
2 (k+1)(k+2) operations and then there

is one weight update for each weight.

Interesting note: If we had also included R as the number of records in the complexity then the
answers are:
(a) O(Rk4 +k6), where the first term is for building an XT X matrix, and the second term is for matrix
inversion.
(b) O(Rk2)
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9 Spectral clustering (12 points)

Consider the graph below. Let W be the distance matrix for this graph where wi,j = 1 iff there is an edge
between nodes i and j and otherwise wi,j = 0. We will define the matrices D and P as we did in class by
setting Di,i =

∑
j wi,j and P = D−1W . As we mentioned in class, P is the probability transition matrix for

this graph. We denote by P t
i,j the i, j entry in the matrix P raised to the power of t.

For each of the expressions below, replace ? with either <, > or = and briefly explain your reasoning.

(a) (3 points) P 20
A,C ? P 100

A,C

Answer: P 20
A,C < P 100

A,C

As the power of P increases it is more likely to transition to another cluster. Since A and C are in
different clusters, it is more likely to end up in C when we take 100 steps than when we take 20 steps.

(b) (3 points) P 20
A,B ? P 100

A,B

Answer: P 20
A,B > P 100

A,B

A and B are in the same cluster. It is more likely to stay in the same cluster when the power of P is
low (few steps) than for higher powers of P (many steps).

(c) (3 points)
∑

j P 20
A,j ?

∑
j P 100

A,j

Answer:
∑

j P 20
A,j =

∑
j P 100

A,j

P t for any t is a probability transition matrix and so its rows always sum to 1.

(d) (3 points) P∞B,A ? P∞B,C

Answer: P∞B,A < P∞B,C

At the limit, the point we end at is independent of the point we started at. Thus, we need to evaluate
the (fixed) probability of ending in A vs. the probability of ending in C. In class, we have shown that
this probability is proportional to the components of the first eigenvector of the symmetric matrix we
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defined (D−1/2WD−1/2). In class (and in the problem set) we have derived the actual values for the
entries of this vector. As we showed, these entries are the square root of the sum of the rows of W .
Since in our case rows sum up to the out degree (or in degree) of the nodes, the probability that we
will end up at a certain point is proportional to the connectivity of that point. Since C is connected
to 5 other nodes whereas A is only connected to 3, P∞B,A < P∞B,C .
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