
10701: Introduction to Machine Learning 

Neural Networks and Deep Learning (1) 
- Basics in artificial neural networks

Eric Xing
Lecture 10, October 7, 2020

Reading: see class homepage
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ML vs DL

© Eric Xing @ CMU, 2020 2



Outline

q An overview of DL components

q Historical remarks: early days of neural networks
q Perception
q ANN
q Reverse-mode automatic differentiation (aka backpropagation)
q Pretrain 
q CNN

q Modern building blocks: units, layers, activations functions, loss 
functions, etc. (next lecture)
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Learning highly non-linear functions

f: X à Y
q f might be non-linear function
q X (vector of) continuous and/or discrete vars
q Y (vector of) continuous and/or discrete vars

The XOR gate Speech recognition
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Perceptron and Neural Nets
q From biological neuron to artificial neuron (perceptron)

q Activation function

q From biological neuron network to artificial neuron networks
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Connectionist Models

q Consider humans:
q Neuron switching time 

~ 0.001 second
q Number of neurons 

~ 1010

q Connections per neuron 
~ 104-5

q Scene recognition time 
~ 0.1 second

q 100 inference steps doesn't seem like enough
à much parallel computation

q Properties of artificial neural nets (ANN)
q Many neuron-like threshold switching units
q Many weighted interconnections among units
q Highly parallel, distributed processes 
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Jargon Pseudo-Correspondence

q Independent variable = input variable
q Dependent variable = output variable
q Coefficients = “weights”
q Estimates = “targets”

Logistic Regression Model (the sigmoid unit)
Inputs Output

Age 34

1Gender

Stage 4

“Probability 
of beingAlive”

5

8

4
0.6

S

Coefficients

a, b, c

Independent variables

x1, x2, x3
Dependent variable

p Prediction © Eric Xing @ CMU, 2020 7



The perceptron learning algorithm

q Recall the nice property of sigmoid function
q Consider regression problem f: XàY, for scalar Y:
q We used to maximize the conditional data likelihood

q Here …

© Eric Xing @ CMU, 2020 8



xd = input

td = target output

od = observed output

wi = weight i

Batch mode:

Do until converge:

1. compute gradient ÑED[w]

2.  

Incremental mode:

Do until converge:

§ For each training example d in D
1. compute gradient ÑEd[w]

2.

where 

The perceptron learning algorithm
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What decision surface does a perceptron define?

x y Z (color)

0 0 1
0 1 1
1 0 1
1 1 0

NAND

some possible values for w1 and w2

w1 w2

0.20
0.20
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0.40
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0.20

f(x1w1 + x2w2) = y 
f(0w1 + 0w2) = 1 
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f(1w1 + 0w2) = 1 
f(1w1 + 1w2) = 0 

y
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w1 w2

q = 0.5

f(a) =  1, for a > q
0, for a £ q

q
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x y Z (color)

0 0 0
0 1 1
1 0 1
1 1 0

What decision surface does a perceptron define?

NAND

f(a) =  1, for a > q
0, for a £ q

q
w1 w4w3 w2

w5 w6

q = 0.5 for all units

a possible set of values for (w1, w2, w3, w4, w5 , w6):
(0.6,-0.6,-0.7,0.8,1,1) © Eric Xing @ CMU, 2020 12
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Inputs
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“Combined logistic models”
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Neural Network Training

q Gradient descent
!"
!#!"

q No target for hidden units...

q Back-Propagation (BP)
q A routine to compute gradient
q Use chain rule of derivative

Training loss
Weight between unit 𝑖 and 𝑗
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Backpropagation: Reverse-mode differentiation
q Artificial neural networks are nothing more than complex functional compositions that can 

be represented by computation graphs:

1
2

3

4
5

Input
variables

x f(x)
Outputs

Intermediate 
computations

@fn
@x

=
X

i12⇡(n)

@fn
@fi1

@fi1
@x
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Backpropagation: Reverse-mode differentiation
q Artificial neural networks are nothing more than complex functional compositions that can 

be represented by computation graphs:

q By applying the chain rule and using reverse accumulation, we get

q The algorithm is commonly known as backpropagation
q What if some of the functions are stochastic?
q Then use stochastic backpropagation!

(to be covered in the next part)
q Modern packages can do this automatically (more later)
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Backpropagation (continue)

21

Say: 𝑭𝒏 = 𝝈

𝜕𝝈
𝜕𝑾𝒏

𝝈 𝟏 − 𝝈 𝒙𝒏"𝟏

𝜕𝝈
𝜕𝑿𝒏"𝟏

𝝈 𝟏 − 𝝈 𝑾𝒏
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Backpropagation (continue)
q Say, 𝐸 = (𝑡 − 𝑜)!, 𝑭𝒏 = 𝝈

q Initialize all weights to small random numbers
Until convergence, Do

1. Input the training example to the network 
and compute the network outputs

1. For each output unit k

2. For each hidden unit h

3. Undate each network weight wi,j

where
22

xd = input

td = target output

od = observed output

wi = weight i
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More on Backpropatation

q It is doing gradient descent over entire network weight vector
q Easily generalized to arbitrary directed graphs
q Will find a local, not necessarily global error minimum

q In practice, often works well (can run multiple times)
q Often include weight momentum a

q Minimizes error  over training examples
q Will it generalize well to subsequent testing examples?

q Training can take thousands of iterations, à very slow!
q Using network after training is very fast
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winitialwtrained

initial error

final error

Error surface

positive change

negative derivative

local minimum

Minimizing the Error
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Overfitting in Neural Nets
C

H
D

age0

Overfitted model “Real” model

cycles

error

Overfitted model

holdout

training
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Alternative Error Functions

q Penalize large weights:

q Training on target slopes as well as values

q Tie together weights

© Eric Xing @ CMU, 2020 26



Pretraining

q A better initialization strategy of weight parameters
q Based on Restricted Boltzmann Machine
q An auto-encoder model 
q Unsupervised
q Layer-wise, greedy

q Useful when training data is limited
q Not necessary when training data is rich
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Restricted Boltzmann Machines

q RBM is a Markov random field represented with a bi-partite graph
q All nodes in one layer/part of the graph are connected to all in the other;

no inter-layer connections

q Joint distribution:
𝑃 𝑣, ℎ =

1
𝑍
exp +

!,#

𝑤!#𝑣!ℎ! ++
!

𝑏!𝑣! ++
#

𝑐#ℎ#

Images from Marcus Frean, MLSS Tutorial 2010 © Eric Xing @ CMU, 2020 28



input ...

Layer-wise Unsupervised Pre-training
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input ...

features ...

Layer-wise Unsupervised Pre-training
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input ...

features ...

Reconstruction
of input

... ... input
?
=

Layer-wise Unsupervised Pre-training
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input ...

features ...

Layer-wise Unsupervised Pre-training
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input ...

features ...

More abstract 
features

...

Layer-wise Unsupervised Pre-training
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input ...

features ...

More abstract 
features

...

Reconstruction
of features

... ...=
?

Layer-wise Unsupervised Pre-training
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input ...

features ...

More abstract 
features

...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 35



input ...

features ...

More abstract 
features

...

Even more 
abstract features

...

Layer-wise Unsupervised Pre-training
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input ...

features ...

More abstract 
features

...

Even more 
abstract features

...

Output
f(X) =

? Target
Y

Layer-wise Unsupervised Pre-training
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Learning Hidden Layer Representation  

q A network:

q A target function:

q Can this be learned?
© Eric Xing @ CMU, 2020 38



Learning Hidden Layer Representation  

q A network:

q Learned hidden layer representation:

© Eric Xing @ CMU, 2020 39



Training

© Eric Xing @ CMU, 2020 40



Training
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X1 X2 X3

—X1“ —X1X3“ —X1X2X3“

Y

—X2“

X1 X2 X3 X1X2 X1X3 X2X3

Y

(23-1) possible combinations

X1X2X3

Y = a(X1) + b(X2) + c(X3) + d(X1X2) + ...

Non-linear LR vs. ANN
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Expressive Capabilities of ANNs

q Boolean functions:
q Every Boolean function can be represented by network with single hidden 

layer
q But might require exponential (in number of inputs) hidden units

q Continuous functions:
q Every bounded continuous function can be approximated with arbitrary small 

error, by network with one hidden layer [Cybenko 1989; Hornik et al 1989]
q Any function can be approximated to arbitrary accuracy by a network with 

two hidden layers [Cybenko 1988]. 
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Feature learning

q Successful learning of intermediate representations 
[Lee et al ICML 2009, Lee et al NIPS 2009]
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Courtesy: Lee and Ng

Computer vision features

SIFT Spin image

HoG RIFT

Textons GLOH

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning

45© Eric Xing @ CMU, 2020



Unsupervised learning of object-parts

Faces Cars Elephants Chairs

Courtesy: Lee and Ng
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Using ANN to learn hierarchical representation

Trainable
Feature

Extractor

Trainable
Feature

Extractor

Trainable
Classifier

Good Representations are hierarchical

• In Language: hierarchy in syntax and semantics
– Words->Parts of Speech->Sentences->Text
– Objects,Actions,Attributes...-> Phrases -> Statements -> Stories
• In Vision: part-whole hierarchy
– Pixels->Edges->Textons->Parts->Objects->Scenes
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“Deep” learning: learning hierarchical 
representations

Trainable
Feature

Extractor

Trainable
Feature

Extractor

Trainable
Classifier

Learned Internal Representation

• Deep Learning: learning a hierarchy of internal representations
• From low-level features to mid-level invariant representations, to object 

identities
• Representations are increasingly invariant as we go up the layers
• Using multiple stages gets around the specificity/invariance dilemma
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Filtering+NonLinearity+Pooling = 1 stage of a 
Convolutional Net

• [Hubel & Wiesel 1962]: 
– simple cells detect local features
– complex cells “pool” the outputs of simple cells within a retinotopic neighborhood. 

pooling 
subsampling

“Simple cells”
“Complex cells”

Multiple 
convolutions

Retinotopic Feature Maps
© Eric Xing @ CMU, 2020 49



Convolutions,
Filtering

Pooling
Subsampling

Convolutions,
Filtering Pooling

Subsampling

Convolutions,
Filtering Convolutions,

Classification

Convolutional Network: Multi-Stage Trainable Architecture

Hierarchical Architecture
Representations are more global, more invariant, and more abstract as we go 
up the layers

Alternated Layers of Filtering and Spatial Pooling
Filtering detects conjunctions of features
Pooling computes local disjunctions of features

Fully Trainable
All the layers are trainable
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input
1@32x32

Layer 1
6@28x28

Layer 2
6@14x14

Layer 3
12@10x10 Layer 4

12@5x5

Layer 5
100@1x1

10

5x5
convolution

5x5
convolution

5x5
convolution2x2

pooling/
subsampling

2x2
pooling/
subsampling

Layer 6: 10

Convolutional Net Architecture for Hand-writing 
recognition

q Convolutional net for handwriting recognition  (400,000 synapses)
q Convolutional layers (simple cells): all units in a feature plane share the same weights
q Pooling/subsampling layers (complex cells): for invariance to small distortions.
q Supervised gradient-descent learning using back-propagation
q The entire network is trained end-to-end.  All the layers are trained simultaneously.
q [LeCun et al. Proc IEEE, 1998]
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Training CNN: depth matters!

q GoogLeNet:

q 21 Layers!
q Gradient vanishes when the network is too deep: Lazy to learn!

q Add intermediate loss layers to produce error signals!
q Do contrast normalization after each conv layer!
q Use ReLU to avoid saturation!

© Eric Xing @ CMU, 2020 52



Training CNN: huge model, more data!

q Only 7 layers, 60M parameters!
q Need more labeled data to train! 
q Data augmentation: crop, translate, rotate, add noise!

© Eric Xing @ CMU, 2020 53



Training CNN: highly nonconvex objective

q Demand more advanced optimization techniques 

q Add momentum as we have done for NN

q Learning rate policy
q decrease learning rate regularly!
q different layers use different learning rate!
q observe the trend of objective curve more often!

q Initialization really cares!
q Supervised pretraining
q Unsupervised pretraining

© Eric Xing @ CMU, 2020 54



Training CNN: avoid overfitting

q More data are always the best way to avoid overfitting
q data augmentation 

q Add regualizations: recall what we have done for linear regression

q Dropout

© Eric Xing @ CMU, 2020 55



Summary: artificial neural networks – what you should 
know

q Highly expressive non-linear functions
q Highly parallel network of logistic function units
q Minimizing sum of squared training errors

q Gives MLE estimates of network weights if we assume zero mean Gaussian noise on output values

q Minimizing sum of sq errors plus weight squared (regularization)
q MAP estimates assuming weight priors are zero mean Gaussian

q Gradient descent as training procedure
q How to derive your own gradient descent procedure

q Discover useful representations at hidden units
q Local minima is greatest problem
q Overfitting, regularization, early stopping
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Limitations

q Supervised Training
q Need huge amount of labeled data, but label is scarce!
q Pre-training, self-supervised training …

q Slow Training
q Train an AlexNet on a single machine need one week!

q Optimization
q Highly nonconvex objective

q Parameter tuning is hard
q The parameter space is so large…
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Supplementary

Detailed Tutorial on Convolutional Neural Network

Some contents are borrowed from Rob Fergus, Yan Lecun and Stanford’s course
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Ordinary 
Neural 

Network

Now

Figure courtesy, Fei-Fei, Andrej Karpathy
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All Neural Net 
activations 
arranged in 3 
dimensions

For example, a CIFAR-10 image is a 32*32*3 volume: 32 
width, 32 height, 3 depth (RGB)

Figure courtesy, Fei-Fei, Andrej Karpathy
© Eric Xing @ CMU, 2020 60



Local connectivity

32

32

3

image: 32 * 32 * 3 volume

before: full connectivity: 
32 * 32 * 3 weights for each 
neuron

now: one unit will connect 
to, e.g. 5*5*3 chunk and 
only have 5*5*3 weights

Note the connectivity is:
- local in space
- full in depth
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Convolution

q One local region only gives one output
q Convolution: Replicate the column of hidden units across space, with 

some stride

• 7 * 7 Input 
• Assume 3*3 connectivity, 

stride = 1

• Produce a map
• What’s the size of the map? 

5 * 5
© Eric Xing @ CMU, 2020 62



Convolution

q One local region only gives one output
q Convolution: Replicate the column of hidden units across space, with 

some stride

• 7 * 7 Input 
• Assume 3*3 connectivity, 

stride = 1

• What if stride = 2? 

© Eric Xing @ CMU, 2020 63



Convolution

q One local region only gives one output
q Convolution: Replicate the column of hidden units across space, with 

some stride

• 7 * 7 Input 
• Assume 3*3 connectivity, 

stride = 1

• What if stride = 3? 

© Eric Xing @ CMU, 2020 64



Convolution: In Practice

q Zero Padding
q Input size: 7 * 7
q Filter Size: 3*3, stride 1
q Pad with 1 pixel border

q Output size?
q 7 * 7 => preserved size!

Slide courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2020 65



Convolution: Summary

q Zero Padding
q Input volume of size [W1 * H1 * D1]
q Using K units with receptive fields F x F and applying them at strides of S gives

Output volume: [W2, H2, D2]

• W2 = (W1 – F)/S + 1
• H2 = (H1 - F) / S + 1
• D2 =k

Slide courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2020 66



Convolution: Problem

q Assume input [32 * 32 * 3]
q 30 units with receptive field 5 * 5, applied at stride 1/pad 1

=> Output volume: [30 * 30 * 30] 
At each position of the output volume, we need 5 * 5 * 3 weights

=> Number of weights in such layer: 27000 * 75 = 2 million L

Idea: 
Weight sharing!

Learn one unit, let the unit 
convolve across all local 
receptive fields! © Eric Xing @ CMU, 2020 67



Convolution: Problem

q Assume input [32 * 32 * 3]
q 30 units with receptive field 5 * 5, applied at stride 1/pad 1

=> Output volume: [30 * 30 * 30]  = 27000 units

Weight sharing
=> Before:  Number of weights in such layer: 27000 * 75 = 2 million L
=> After: weight sharing: 30 * 75 = 2250 J

But also note that sometimes it’s not a good idea to do 
weight sharing! When? 

© Eric Xing @ CMU, 2020 68



Convolutional Layers

q Connect units only to local receptive fields
q Use the same unit weight parameters for units in each “depth slice” (i.e. 

across spatial positions)

Can call the units “filters”

We call the layer convolutional because 
it is related to convolution of two signals

Short question:  Will convolution layers 
introduce nonlinearity?

Sometimes we also add a bias term b, y = Wx + b, 
like what we have done for ordinary NN
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Stacking Convolutional Layers

© Eric Xing @ CMU, 2020 70



Pooling Layers
• In ConvNet architectures, Conv layers are often 

followed by Pool layers
• makes the representations smaller and more manageable 

without losing too much information. Computes MAX 
operation (most common)

Slide courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2020 71



Pooling Layers

q In ConvNet architectures, Conv layers are often followed by Pool layers
q makes the representations smaller and more manageable without losing too much 

information. Computes MAX operation (most common) 
q Input volume of size [W1 x H1 x D1] 
q Pooling unit receptive fields F x F and applying them at strides of S gives 
q Output volume: [W2, H2, D1]: depth unchanged!

W2 = (W1-F)/S+1, 
H2 = (H1-F)/S+1 

Short question: Will pooling layer introduce nonlinearity?  
© Eric Xing @ CMU, 2020 72



Nonlinerity

q Similar to NN, we need to introduce nonlinearity in CNN
q Sigmoid
q Tanh
q RELU: Rectified Linear Units  -> preferred

q Simplifies backpropagation 
q Makes learning faster 
q Avoids saturation issues

Slide courtesy, Yan Lecun
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Convolutional Networks: 1989

q LeNet: a layered model composed of convolution and subsampling 
operations followed by a holistic representation and ultimately a classifier 
for handwritten digits. [ LeNet ]

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2020 74



Convolutional Nets: 2012

q AlexNet: a layered model composed of convolution, subsampling, and 
further operations followed by a holistic representation and all-in-all a 
landmark classifier on

q ILSVRC12. [ AlexNet ]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2020 75



Convolutional Nets: 2014

q ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale dimension-reduced modules (pictured)
- VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected 

layers 

+ depth
+ data
+ dimensionality reduction

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2020 76



Training CNN: Use GPU

q Convolutional layers
q Reduce parameters BUT Increase computations

q FC layers
q each neuron has more weights 
q but less computations

q Conv layers
q each neuron has less weights
q but more computations. Why?

because of weight sharing! 
it will convolve at every position!

GPU is good 
at 

convolution!
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Visualize and Understand CNN

A CNN transforms the 
image to 4096 
numbers that are then 
linearly classified. 

© Eric Xing @ CMU, 2020 78



Visualize and Understand CNN
• Find images that maximize some class score: 

Yes, Google 
Inceptionism! © Eric Xing @ CMU, 2020 79


