
10701: Introduction to Machine Learning

Neural Networks and Deep Learning (1)
- Basics in artificial neural networks

Eric Xing
Lecture 10, October 7, 2020

Reading: see class homepage
© Eric Xing @ CMU, 2020 1

ML vs DL

© Eric Xing @ CMU, 2020 2

Outline

q An overview of DL components

q Historical remarks: early days of neural networks
q Perception
q ANN
q Reverse-mode automatic differentiation (aka backpropagation)
q Pretrain
q CNN

q Modern building blocks: units, layers, activations functions, loss
functions, etc. (next lecture)

© Eric Xing @ CMU, 2020 3

Learning highly non-linear functions

f: X à Y
q f might be non-linear function
q X (vector of) continuous and/or discrete vars
q Y (vector of) continuous and/or discrete vars

The XOR gate Speech recognition

© Eric Xing @ CMU, 2020 4

Perceptron and Neural Nets
q From biological neuron to artificial neuron (perceptron)

q Activation function

q From biological neuron network to artificial neuron networks

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites
Axon

Input Layer Output Layer

Middle Layer

I n
 p

 u
 t

 S
 i g

 n
 a

 l
s

O
 u

 t
p

u
t

 S
 i g

 n
 a

 l
s

Threshold

Inputs

x1

x2

Output
Yå

Hard
Limiter

w2

w1

Linear
Combiner

q

McCulloch & Pitts (1943)

© Eric Xing @ CMU, 2020 5

å
=

=
n

i
iiwxX

1 î
í
ì

w<-
w³+

=
0

0

X
X

Y
 if ,
 if ,

1
1

Connectionist Models

q Consider humans:
q Neuron switching time

~ 0.001 second
q Number of neurons

~ 1010

q Connections per neuron
~ 104-5

q Scene recognition time
~ 0.1 second

q 100 inference steps doesn't seem like enough
à much parallel computation

q Properties of artificial neural nets (ANN)
q Many neuron-like threshold switching units
q Many weighted interconnections among units
q Highly parallel, distributed processes

© Eric Xing @ CMU, 2020 6

Jargon Pseudo-Correspondence

q Independent variable = input variable
q Dependent variable = output variable
q Coefficients = “weights”
q Estimates = “targets”

Logistic Regression Model (the sigmoid unit)
Inputs Output

Age 34

1Gender

Stage 4

“Probability
of beingAlive”

5

8

4
0.6

S

Coefficients

a, b, c

Independent variables

x1, x2, x3
Dependent variable

p Prediction © Eric Xing @ CMU, 2020 7

The perceptron learning algorithm

q Recall the nice property of sigmoid function
q Consider regression problem f: XàY, for scalar Y:
q We used to maximize the conditional data likelihood

q Here …

© Eric Xing @ CMU, 2020 8

xd = input

td = target output

od = observed output

wi = weight i

Batch mode:

Do until converge:

1. compute gradient ÑED[w]

2.

Incremental mode:

Do until converge:

§ For each training example d in D
1. compute gradient ÑEd[w]

2.

where

The perceptron learning algorithm

© Eric Xing @ CMU, 2020 9

What decision surface does a perceptron define?

x y Z (color)

0 0 1
0 1 1
1 0 1
1 1 0

NAND

some possible values for w1 and w2

w1 w2

0.20
0.20
0.25
0.40

0.35
0.40
0.30
0.20

f(x1w1 + x2w2) = y
f(0w1 + 0w2) = 1
f(0w1 + 1w2) = 1
f(1w1 + 0w2) = 1
f(1w1 + 1w2) = 0

y

x1 x2

w1 w2

q = 0.5

f(a) = 1, for a > q
0, for a £ q

q

© Eric Xing @ CMU, 2020 10

x y Z (color)

0 0 0
0 1 1
1 0 1
1 1 0

What decision surface does a perceptron define?

NAND

some possible values for w1 and w2

w1 w2

f(x1w1 + x2w2) = y
f(0w1 + 0w2) = 0
f(0w1 + 1w2) = 1
f(1w1 + 0w2) = 1
f(1w1 + 1w2) = 0

y

x1 x2

w1 w2

q = 0.5

f(a) = 1, for a > q
0, for a £ q

q

© Eric Xing @ CMU, 2020 11

x y Z (color)

0 0 0
0 1 1
1 0 1
1 1 0

What decision surface does a perceptron define?

NAND

f(a) = 1, for a > q
0, for a £ q

q
w1 w4w3 w2

w5 w6

q = 0.5 for all units

a possible set of values for (w1, w2, w3, w4, w5 , w6):
(0.6,-0.6,-0.7,0.8,1,1) © Eric Xing @ CMU, 2020 12

Cough No cough

CoughNo cough
No headache No headache

Headache Headache

No disease

Meningitis Flu

Pneumonia

No treatment
Treatment

00 10

01 11

000 100

010

101

111011

110

Non Linear Separation

© Eric Xing @ CMU, 2020 13

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

WeightsHiddenL
ayer

“Probability
of
beingAlive”

0.6

S
S

.
4

.2
S

Neural Network Model

© Eric Xing @ CMU, 2020 14

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.6

.5

.8

.1

.7

WeightsHiddenL
ayer

“Probability
of
beingAlive”

0.6

S

“Combined logistic models”

© Eric Xing @ CMU, 2020 15

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.5

.8
.2

.3

.2

WeightsHiddenL
ayer

“Probability
of
beingAlive”

0.6

S

“Combined logistic models”

© Eric Xing @ CMU, 2020 16

“Combined logistic models”

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

1Gender

Stage 4

.6
.5

.8
.2

.1

.3
.7

.2

WeightsHiddenL
ayer

“Probability
of
beingAlive”

0.6

S

© Eric Xing @ CMU, 2020 17

Neural Network Training

q Gradient descent
!"
!#!"

q No target for hidden units...

q Back-Propagation (BP)
q A routine to compute gradient
q Use chain rule of derivative

Training loss
Weight between unit 𝑖 and 𝑗

WeightsIndependent
variables

Dependent
variable

Prediction

Age 34

2Gender

Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

WeightsHiddenL
ayer

“Probability
of
beingAlive”

0.6

S
S

.
4

.2
S

© Eric Xing @ CMU, 2020 18

Backpropagation: Reverse-mode differentiation
q Artificial neural networks are nothing more than complex functional compositions that can

be represented by computation graphs:

1
2

3

4
5

Input
variables

x f(x)
Outputs

Intermediate
computations

@fn
@x

=
X

i12⇡(n)

@fn
@fi1

@fi1
@x

© Eric Xing @ CMU, 2020 19

Backpropagation: Reverse-mode differentiation
q Artificial neural networks are nothing more than complex functional compositions that can

be represented by computation graphs:

q By applying the chain rule and using reverse accumulation, we get

q The algorithm is commonly known as backpropagation
q What if some of the functions are stochastic?
q Then use stochastic backpropagation!

(to be covered in the next part)
q Modern packages can do this automatically (more later)

@fn
@x

=
X

i12⇡(n)

@fn
@fi1

@fi1
@x

=
X

i12⇡(n)

@fn
@fi1

X

i22⇡(i1)

@fi1
@fi2

@fi1
@x

= . . .

1
2

3

4
5x f(x)

@fn
@x

=
X

i12⇡(n)

@fn
@fi1

@fi1
@x

© Eric Xing @ CMU, 2020 20

Backpropagation (continue)

21

Say: 𝑭𝒏 = 𝝈

𝜕𝝈
𝜕𝑾𝒏

𝝈 𝟏 − 𝝈 𝒙𝒏"𝟏

𝜕𝝈
𝜕𝑿𝒏"𝟏

𝝈 𝟏 − 𝝈 𝑾𝒏

© Eric Xing @ CMU, 2020

Backpropagation (continue)
q Say, 𝐸 = (𝑡 − 𝑜)!, 𝑭𝒏 = 𝝈

q Initialize all weights to small random numbers
Until convergence, Do

1. Input the training example to the network
and compute the network outputs

1. For each output unit k

2. For each hidden unit h

3. Undate each network weight wi,j

where
22

xd = input

td = target output

od = observed output

wi = weight i

© Eric Xing @ CMU, 2020

More on Backpropatation

q It is doing gradient descent over entire network weight vector
q Easily generalized to arbitrary directed graphs
q Will find a local, not necessarily global error minimum

q In practice, often works well (can run multiple times)
q Often include weight momentum a

q Minimizes error over training examples
q Will it generalize well to subsequent testing examples?

q Training can take thousands of iterations, à very slow!
q Using network after training is very fast

© Eric Xing @ CMU, 2020 23

winitialwtrained

initial error

final error

Error surface

positive change

negative derivative

local minimum

Minimizing the Error

© Eric Xing @ CMU, 2020 24

Overfitting in Neural Nets
C

H
D

age0

Overfitted model “Real” model

cycles

error

Overfitted model

holdout

training

© Eric Xing @ CMU, 2020 25

Alternative Error Functions

q Penalize large weights:

q Training on target slopes as well as values

q Tie together weights

© Eric Xing @ CMU, 2020 26

Pretraining

q A better initialization strategy of weight parameters
q Based on Restricted Boltzmann Machine
q An auto-encoder model
q Unsupervised
q Layer-wise, greedy

q Useful when training data is limited
q Not necessary when training data is rich

© Eric Xing @ CMU, 2020 27

Restricted Boltzmann Machines

q RBM is a Markov random field represented with a bi-partite graph
q All nodes in one layer/part of the graph are connected to all in the other;

no inter-layer connections

q Joint distribution:
𝑃 𝑣, ℎ =

1
𝑍
exp +

!,#

𝑤!#𝑣!ℎ! ++
!

𝑏!𝑣! ++
#

𝑐#ℎ#

Images from Marcus Frean, MLSS Tutorial 2010 © Eric Xing @ CMU, 2020 28

input ...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 29

input ...

features ...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 30

input ...

features ...

Reconstruction
of input

... ... input
?
=

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 31

input ...

features ...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 32

input ...

features ...

More abstract
features

...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 33

input ...

features ...

More abstract
features

...

Reconstruction
of features

... ...=
?

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 34

input ...

features ...

More abstract
features

...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 35

input ...

features ...

More abstract
features

...

Even more
abstract features

...

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 36

input ...

features ...

More abstract
features

...

Even more
abstract features

...

Output
f(X) =

? Target
Y

Layer-wise Unsupervised Pre-training

© Eric Xing @ CMU, 2020 37

Learning Hidden Layer Representation

q A network:

q A target function:

q Can this be learned?
© Eric Xing @ CMU, 2020 38

Learning Hidden Layer Representation

q A network:

q Learned hidden layer representation:

© Eric Xing @ CMU, 2020 39

Training

© Eric Xing @ CMU, 2020 40

Training

© Eric Xing @ CMU, 2020 41

X1 X2 X3

—X1“ —X1X3“ —X1X2X3“

Y

—X2“

X1 X2 X3 X1X2 X1X3 X2X3

Y

(23-1) possible combinations

X1X2X3

Y = a(X1) + b(X2) + c(X3) + d(X1X2) + ...

Non-linear LR vs. ANN

© Eric Xing @ CMU, 2020 42

Expressive Capabilities of ANNs

q Boolean functions:
q Every Boolean function can be represented by network with single hidden

layer
q But might require exponential (in number of inputs) hidden units

q Continuous functions:
q Every bounded continuous function can be approximated with arbitrary small

error, by network with one hidden layer [Cybenko 1989; Hornik et al 1989]
q Any function can be approximated to arbitrary accuracy by a network with

two hidden layers [Cybenko 1988].

© Eric Xing @ CMU, 2020 43

Feature learning

q Successful learning of intermediate representations
[Lee et al ICML 2009, Lee et al NIPS 2009]

© Eric Xing @ CMU, 2020 44

Courtesy: Lee and Ng

Computer vision features

SIFT Spin image

HoG RIFT

Textons GLOH

Drawbacks of feature engineering
1. Needs expert knowledge
2. Time consuming hand-tuning

45© Eric Xing @ CMU, 2020

Unsupervised learning of object-parts

Faces Cars Elephants Chairs

Courtesy: Lee and Ng
© Eric Xing @ CMU, 2020 46

Using ANN to learn hierarchical representation

Trainable
Feature

Extractor

Trainable
Feature

Extractor

Trainable
Classifier

Good Representations are hierarchical

• In Language: hierarchy in syntax and semantics
– Words->Parts of Speech->Sentences->Text
– Objects,Actions,Attributes...-> Phrases -> Statements -> Stories
• In Vision: part-whole hierarchy
– Pixels->Edges->Textons->Parts->Objects->Scenes

© Eric Xing @ CMU, 2020 47

“Deep” learning: learning hierarchical
representations

Trainable
Feature

Extractor

Trainable
Feature

Extractor

Trainable
Classifier

Learned Internal Representation

• Deep Learning: learning a hierarchy of internal representations
• From low-level features to mid-level invariant representations, to object

identities
• Representations are increasingly invariant as we go up the layers
• Using multiple stages gets around the specificity/invariance dilemma

© Eric Xing @ CMU, 2020 48

Filtering+NonLinearity+Pooling = 1 stage of a
Convolutional Net

• [Hubel & Wiesel 1962]:
– simple cells detect local features
– complex cells “pool” the outputs of simple cells within a retinotopic neighborhood.

pooling
subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Retinotopic Feature Maps
© Eric Xing @ CMU, 2020 49

Convolutions,
Filtering

Pooling
Subsampling

Convolutions,
Filtering Pooling

Subsampling

Convolutions,
Filtering Convolutions,

Classification

Convolutional Network: Multi-Stage Trainable Architecture

Hierarchical Architecture
Representations are more global, more invariant, and more abstract as we go
up the layers

Alternated Layers of Filtering and Spatial Pooling
Filtering detects conjunctions of features
Pooling computes local disjunctions of features

Fully Trainable
All the layers are trainable

© Eric Xing @ CMU, 2020 50

input
1@32x32

Layer 1
6@28x28

Layer 2
6@14x14

Layer 3
12@10x10 Layer 4

12@5x5

Layer 5
100@1x1

10

5x5
convolution

5x5
convolution

5x5
convolution2x2

pooling/
subsampling

2x2
pooling/
subsampling

Layer 6: 10

Convolutional Net Architecture for Hand-writing
recognition

q Convolutional net for handwriting recognition (400,000 synapses)
q Convolutional layers (simple cells): all units in a feature plane share the same weights
q Pooling/subsampling layers (complex cells): for invariance to small distortions.
q Supervised gradient-descent learning using back-propagation
q The entire network is trained end-to-end. All the layers are trained simultaneously.
q [LeCun et al. Proc IEEE, 1998]

© Eric Xing @ CMU, 2020 51

Training CNN: depth matters!

q GoogLeNet:

q 21 Layers!
q Gradient vanishes when the network is too deep: Lazy to learn!

q Add intermediate loss layers to produce error signals!
q Do contrast normalization after each conv layer!
q Use ReLU to avoid saturation!

© Eric Xing @ CMU, 2020 52

Training CNN: huge model, more data!

q Only 7 layers, 60M parameters!
q Need more labeled data to train!
q Data augmentation: crop, translate, rotate, add noise!

© Eric Xing @ CMU, 2020 53

Training CNN: highly nonconvex objective

q Demand more advanced optimization techniques

q Add momentum as we have done for NN

q Learning rate policy
q decrease learning rate regularly!
q different layers use different learning rate!
q observe the trend of objective curve more often!

q Initialization really cares!
q Supervised pretraining
q Unsupervised pretraining

© Eric Xing @ CMU, 2020 54

Training CNN: avoid overfitting

q More data are always the best way to avoid overfitting
q data augmentation

q Add regualizations: recall what we have done for linear regression

q Dropout

© Eric Xing @ CMU, 2020 55

Summary: artificial neural networks – what you should
know

q Highly expressive non-linear functions
q Highly parallel network of logistic function units
q Minimizing sum of squared training errors

q Gives MLE estimates of network weights if we assume zero mean Gaussian noise on output values

q Minimizing sum of sq errors plus weight squared (regularization)
q MAP estimates assuming weight priors are zero mean Gaussian

q Gradient descent as training procedure
q How to derive your own gradient descent procedure

q Discover useful representations at hidden units
q Local minima is greatest problem
q Overfitting, regularization, early stopping

© Eric Xing @ CMU, 2020 56

Limitations

q Supervised Training
q Need huge amount of labeled data, but label is scarce!
q Pre-training, self-supervised training …

q Slow Training
q Train an AlexNet on a single machine need one week!

q Optimization
q Highly nonconvex objective

q Parameter tuning is hard
q The parameter space is so large…

© Eric Xing @ CMU, 2020 57

Supplementary

Detailed Tutorial on Convolutional Neural Network

Some contents are borrowed from Rob Fergus, Yan Lecun and Stanford’s course

© Eric Xing @ CMU, 2020 58

Ordinary
Neural

Network

Now

Figure courtesy, Fei-Fei, Andrej Karpathy
© Eric Xing @ CMU, 2020 59

All Neural Net
activations
arranged in 3
dimensions

For example, a CIFAR-10 image is a 32*32*3 volume: 32
width, 32 height, 3 depth (RGB)

Figure courtesy, Fei-Fei, Andrej Karpathy
© Eric Xing @ CMU, 2020 60

Local connectivity

32

32

3

image: 32 * 32 * 3 volume

before: full connectivity:
32 * 32 * 3 weights for each
neuron

now: one unit will connect
to, e.g. 5*5*3 chunk and
only have 5*5*3 weights

Note the connectivity is:
- local in space
- full in depth

© Eric Xing @ CMU, 2020 61

Convolution

q One local region only gives one output
q Convolution: Replicate the column of hidden units across space, with

some stride

• 7 * 7 Input
• Assume 3*3 connectivity,

stride = 1

• Produce a map
• What’s the size of the map?

5 * 5
© Eric Xing @ CMU, 2020 62

Convolution

q One local region only gives one output
q Convolution: Replicate the column of hidden units across space, with

some stride

• 7 * 7 Input
• Assume 3*3 connectivity,

stride = 1

• What if stride = 2?

© Eric Xing @ CMU, 2020 63

Convolution

q One local region only gives one output
q Convolution: Replicate the column of hidden units across space, with

some stride

• 7 * 7 Input
• Assume 3*3 connectivity,

stride = 1

• What if stride = 3?

© Eric Xing @ CMU, 2020 64

Convolution: In Practice

q Zero Padding
q Input size: 7 * 7
q Filter Size: 3*3, stride 1
q Pad with 1 pixel border

q Output size?
q 7 * 7 => preserved size!

Slide courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2020 65

Convolution: Summary

q Zero Padding
q Input volume of size [W1 * H1 * D1]
q Using K units with receptive fields F x F and applying them at strides of S gives

Output volume: [W2, H2, D2]

• W2 = (W1 – F)/S + 1
• H2 = (H1 - F) / S + 1
• D2 =k

Slide courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2020 66

Convolution: Problem

q Assume input [32 * 32 * 3]
q 30 units with receptive field 5 * 5, applied at stride 1/pad 1

=> Output volume: [30 * 30 * 30]
At each position of the output volume, we need 5 * 5 * 3 weights

=> Number of weights in such layer: 27000 * 75 = 2 million L

Idea:
Weight sharing!

Learn one unit, let the unit
convolve across all local
receptive fields! © Eric Xing @ CMU, 2020 67

Convolution: Problem

q Assume input [32 * 32 * 3]
q 30 units with receptive field 5 * 5, applied at stride 1/pad 1

=> Output volume: [30 * 30 * 30] = 27000 units

Weight sharing
=> Before: Number of weights in such layer: 27000 * 75 = 2 million L
=> After: weight sharing: 30 * 75 = 2250 J

But also note that sometimes it’s not a good idea to do
weight sharing! When?

© Eric Xing @ CMU, 2020 68

Convolutional Layers

q Connect units only to local receptive fields
q Use the same unit weight parameters for units in each “depth slice” (i.e.

across spatial positions)

Can call the units “filters”

We call the layer convolutional because
it is related to convolution of two signals

Short question: Will convolution layers
introduce nonlinearity?

Sometimes we also add a bias term b, y = Wx + b,
like what we have done for ordinary NN

© Eric Xing @ CMU, 2020 69

Stacking Convolutional Layers

© Eric Xing @ CMU, 2020 70

Pooling Layers
• In ConvNet architectures, Conv layers are often

followed by Pool layers
• makes the representations smaller and more manageable

without losing too much information. Computes MAX
operation (most common)

Slide courtesy, Fei-Fei, Andrej Karpathy© Eric Xing @ CMU, 2020 71

Pooling Layers

q In ConvNet architectures, Conv layers are often followed by Pool layers
q makes the representations smaller and more manageable without losing too much

information. Computes MAX operation (most common)
q Input volume of size [W1 x H1 x D1]
q Pooling unit receptive fields F x F and applying them at strides of S gives
q Output volume: [W2, H2, D1]: depth unchanged!

W2 = (W1-F)/S+1,
H2 = (H1-F)/S+1

Short question: Will pooling layer introduce nonlinearity?
© Eric Xing @ CMU, 2020 72

Nonlinerity

q Similar to NN, we need to introduce nonlinearity in CNN
q Sigmoid
q Tanh
q RELU: Rectified Linear Units -> preferred

q Simplifies backpropagation
q Makes learning faster
q Avoids saturation issues

Slide courtesy, Yan Lecun
© Eric Xing @ CMU, 2020 73

Convolutional Networks: 1989

q LeNet: a layered model composed of convolution and subsampling
operations followed by a holistic representation and ultimately a classifier
for handwritten digits. [LeNet]

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2020 74

Convolutional Nets: 2012

q AlexNet: a layered model composed of convolution, subsampling, and
further operations followed by a holistic representation and all-in-all a
landmark classifier on

q ILSVRC12. [AlexNet]

+ data
+ gpu
+ non-saturating nonlinearity
+ regularization

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2020 75

Convolutional Nets: 2014

q ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale dimension-reduced modules (pictured)
- VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected

layers

+ depth
+ data
+ dimensionality reduction

Slide courtesy, Yangqing Jia© Eric Xing @ CMU, 2020 76

Training CNN: Use GPU

q Convolutional layers
q Reduce parameters BUT Increase computations

q FC layers
q each neuron has more weights
q but less computations

q Conv layers
q each neuron has less weights
q but more computations. Why?

because of weight sharing!
it will convolve at every position!

GPU is good
at

convolution!
© Eric Xing @ CMU, 2020 77

Visualize and Understand CNN

A CNN transforms the
image to 4096
numbers that are then
linearly classified.

© Eric Xing @ CMU, 2020 78

Visualize and Understand CNN
• Find images that maximize some class score:

Yes, Google
Inceptionism! © Eric Xing @ CMU, 2020 79

