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Back to classification

1. Instance based classifiers

- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:

- build a generative statistical model

- e.g., Bayesian networks

3. Discriminative

- directly estimate a decision rule/boundary

- e.g., decision tree



Generative vs. discriminative 

classifiers
• When using generative classifiers we relied on all points to learn the 

generative model

• When using discriminative classifiers we mainly care about the 

boundary 

• Unlike generative classifiers, discriminative classifiers *do not*

compute P(X|Y)



• Our goal is to estimate w from a training data 

of <xi,yi> pairs

• One way to find such relationship is to 

minimize the a least squares error:

Linear regression
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Regression for classification

• In some cases we can use linear regression for determining the 

appropriate boundary.

• However, since the output is usually binary or discrete there are 

more efficient regression methods

• Recall that for classification we are interested in the conditional 

probability p(y | X ; ) where  are the parameters of our model

• When using regression  represents the values of our regression 

coefficients (w).



Regression for classification

• Assume we would like to use linear regression to learn the 

parameters for  p(y | X ; )

• Problems?

1

-1

Optimal regression

model

wTX  0  classify as 1

wTX < 0  classify as -1
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The sigmoid function

• To classify using regression models 

we replace the linear function with the 

sigmoid function:

• Using the sigmoid we set (for binary 

classification problems)
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The sigmoid function

• To classify using regression models 

we replace the linear function with the 

sigmoid function:

• Using the sigmoid we set (for binary 

classification problems)
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Note that we are 
defining the 

probabilities in terms 
of p(y|X). No need to 
use Bayes rule here!



Logistic regression vs. Linear 

regression
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Determining parameters for logistic 

regression problems
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• So how do we learn the parameters?

• Similar to other regression problems 

we look for the MLE for w

• The likelihood of the data given the 

model is:
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Defining a new 
function, g



Solving logistic regression 

problems
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• The likelihood of the data is:

• Taking the log we get: 
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Maximum likelihood estimation
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Bad news: No close 

form solution!

Good news: Concave 

function

Taking the partial 
derivative w.r.t. 

each component of 
the w vector 
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Gradient ascent

z=x(y-g(w;x))

w

Slope = z/ w

z

w

• Going in the direction to the slope will lead to a larger z

• But not too much, otherwise we would go beyond the 

optimal w



Gradient descent

z=(f(w)-y)2

w

Slope = z/ w

z

w

• Going in the opposite direction to the slope will lead to 

a smaller z

• But not too much, otherwise we would go beyond the 

optimal w



Gradient ascent for logistic 

regression
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We use the gradient to adjust the value of w:

Where  is a (small) constant which is the 

learning rate for this algorithm
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Algorithm for logistic regression

1. Chose 

2. Start with a guess for w

3. For all j set 

4. If no improvement for 

stop. Otherwise go to step 3 

Example
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Regularization

• Similar to other data estimation problems, we may not have enough 

samples to learn good models for logistic regression classification

• One way to overcome this is to ‘regularize’ the model, impose 

additional constraints on the parameters we are fitting.

• For example, lets assume that wj comes from a Gaussian 

distribution with mean 0 and variance 2 (where 2 is a user defined 

parameter): wj~N(0, 2)

• In that case we have a prior on the parameters and so: 
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Regularization

• If we regularize the parameters we need to take the prior into 

account when computing the posterior for our parameters

• Here we use a Gaussian model for the prior.

• Thus, the  log likelihood changes to :

• And the new update rule (after taking the derivative w.r.t. wi) is:
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of 0 and  

removing terms 

that are not 

dependent on w

The variance of 

our prior modelAlso known as the MAP 

estimate
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Regularization

• There are many other ways to regularize logistic regression

• The Gaussian model leads to an L2 regularization (we are trying to 

minimize the square value of w)

• Another popular regularization is an L1 which tries to minimize |w|



Logistic regression for more 

than 2 classes
• Logistic regression can be used to classify data from more than 2 

classes. Assume we have k classes then:

• for i<k we set

where

And for k we have 
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Logistic regression for more 

than 2 classes
• Logistic regression can be used to classify data from more than 2 

classes. Assume we have k classes then:

• for i<k we set

where

And for k we have 
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Binary logistic regression is a 

special case of this rule



Update rule for logistic 

regression with multiple classes
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Where (yi)=1 if yi=m 

and (yi)=0 otherwise

The update rule becomes:
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Data transformation

• Similar to what we did with linear regression we can extend logistic 

regression to other transformations of the data 

• As before, we are free to choose the basis functions
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Important points

• Advantage of logistic regression over linear regression for 

classification

• Sigmoid function

• Gradient ascent / descent

• Regularization

• Logistic regression for multiple classes

• Optional reading: Murphy 8.1-3, 8.6



Logistic regression

• The name comes from the logit transformation:
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