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Types of classifiers

• We can divide the large variety of classification approaches into roughly three major 
types 

1. Instance based classifiers

- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:

- build a generative statistical model

- e.g., Bayesian networks

3. Discriminative

- directly estimate a decision rule/boundary

- e.g., decision tree



Ranking classifiers

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised 
Learning Algorithms, ICML 2006



Regression classifiers

Recall our regression classifiers

+1 if sign(wTx+b)0

-1  if sign(wTx+b)<0



Regression classifiers

Recall our regression classifiers

Line closer to the 

blue nodes since 

many of them are 

far away from the 

boundary



Regression classifiers

Recall our regression classifiers

 −
i

iiw xy 2T )w(min

Line closer to the 

blue nodes since 

many of them are 

far away from the 

boundary

Goes over all points 

x (even for logistic 

regression)



Regression classifiers

Recall our regression classifiers

Line closer to the 

blue nodes since 

many of them are 

far away from the 

boundary

Goes over all points 

x (even in LR 

settings)

Many more 

possible classifiers

 −
i

iiw xy 2T )w(min



Max margin classifiers
• Instead of fitting all points, focus on boundary points

•Learn a boundary that leads to the largest margin from both 

sets of points (that is, largest distance to the closest point on 

either side)

From all the 

possible boundary 

lines, this leads to 

the largest margin 

on both sides



Max margin classifiers

• Instead of fitting all points, focus on boundary points

• Learn a boundary that leads to the largest margin from points on both 

sides

D

D
Why? 

• Intuitive, ‘makes 

sense’

• Some theoretical 

support

• Works well in practice



Max margin classifiers

• Instead of fitting all points, focus on boundary points

• Learn a boundary that leads to the largest margin from points on both 

sides

D

D
Also known as linear 

support vector 

machines (SVMs)

These are the vectors 

supporting the boundary



Specifying a max margin 

classifier

Classify as +1            if                  wTx+b  1

Classify as -1             if                  wTx+b  - 1

Undefined                  if                 -1 <wTx+b < 1

Class +1 plane

boundary

Class -1 plane



Specifying a max margin 

classifier

Classify as +1            if                  wTx+b  1

Classify as -1             if                  wTx+b  - 1

Undefined                  if                 -1 <wTx+b < 1

Is the linear separation 

assumption realistic? 

We will deal with this shortly, 

but lets assume it for now



Maximizing the margin

Classify as +1   if   wTx+b  1

Classify as -1    if   wTx+b  - 1

Undefined         if   -1 <wTx+b < 1

• Lets define the width of the margin by M

• How can we encode our goal of maximizing M in terms of 

our parameters (w and b)?

• Lets start with a few obsevrations



Maximizing the margin

Classify as +1   if   wTx+b  1

Classify as -1    if   wTx+b  - 1

Undefined         if   -1 <wTx+b < 1

• Observation 1: the vector w is orthogonal to the +1 plane

• Why?

Let u and v be two points on the +1 plane, 

then for the vector defined by u and v we have 

wT(u-v) = 0

Corollary: the vector w is orthogonal to the -1 plane 



Maximizing the margin

Classify as +1   if   wTx+b  1

Classify as -1    if   wTx+b  - 1

Undefined         if   -1 <wTx+b < 1

• Observation 1: the vector w is orthogonal to the +1 and -1 planes

• Observation 2: if x+ is a point on the +1 plane and x- is the closest point 

to x+ on the -1 plane then 

x+ = w + x-

Since w is orthogonal to both planes 

we need to ‘travel’ some distance 

along w to get from x+ to x-



Putting it together

• wT x+ + b = +1

• wT x- + b = -1

• x+ = w + x-

• | x+ - x- | = M

We can now define M in 

terms of w and b

wT x+ + b = +1



wT (w + x-) + b = +1



wTx- + b  + wTw = +1



-1  + wTw = +1



 = 2/wTw



Putting it together

• wT x+ + b = +1

• wT x- + b = -1

• x+ = w + x-

• | x+ - x- | = M

•  = 2/wTw

We can now define M in 

terms of w and b

M = |x+ - x-|





 

M =|w |=  |w |=| wTw

 

M = 2
wTw

wTw
=

2

wTw



Finding the optimal parameters

 

M =
2

wTw

We can now search for the optimal parameters by finding a 

solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used: 

Gradient descent, simulated annealing, EM 

etc.



Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:

 

minU
uTRu

2
+ dTu+ c

subject to n inequality constraints:

 

a11u1 + a12u2 + ... b1

an1u1 + an2u2 + ... bn

and k equivalency constraints:

 

an+1,1u1 + an+1,2u2 + ...= bn+1

an+k,1u1 + an+k,2u2 + ...= bn+k

Quadratic term

When a problem can be 

specified as a QP problem we 

can use solvers that are better 

than gradient descent or 

simulated annealing

u -vector (unknown)

R – squared matrix

d – vector 

c - scalar 



SVM as a QP problem

 

minU
uTRu

2
+ dTu+ c

subject to n inequality constraints:

 

a11u1 + a12u2 + ... b1

an1u1 + an2u2 + ... bn

and k equivalency constraints:

 

an+1,1u1 + an+1,2u2 + ...= bn+1

an+k,1u1 + an+k,2u2 + ...= bn+k

 

M =
2

wTw

Min (wTw)/2 

subject to the following inequality 

constraints:

For all  x in class + 1

wTx+b  1

For all  x in class - 1

wTx+b  -1
}

A total of n 

constraints if 

we have n 

input samples



Non linearly separable case
• So far we assumed that a linear plane can perfectly  

separate the points

• But this is not usally the case

- noise, outliers
How can we convert this to a 

QP problem?

- Minimize training errors?

min wTw

min  #errors

- Penalize training errors:

min wTw+C*(#errors)

Hard to solve (two 

minimization problems)

Hard to encode in a QP 

problem



Non linearly separable case
• Instead of minimizing the number of misclassified points we can 

minimize the distance between these points and their correct plane

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality 

constraints:

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

 

minw
wTw

2
+ Ci
i=1

n



Wait. Are we missing 

something?

These are also support vectors since 

they impact the parameters of the 

decision boundary



Final optimization for non 

linearly separable case

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality 

constraints:

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

 

minw
wTw

2
+ Ci
i=1

n



For all i

I  0

} A total of n 

constraints

} Another n 

constraints



Where we are
Two optimization problems: For the separable and non separable cases

For all  x in class + 1

wTx+b  1

For all  x in class - 1

wTx+b  -1

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

 

minw
wTw

2
+ Ci
i=1

n



For all i

I  0

 

minw
wTw

2



Where we are
Two optimization problems: For the separable and non separable cases

Min (wTw)/2 

For all  x in class + 1

wTx+b  1

For all  x in class - 1

wTx+b  -1

For all  xi in class + 1

wTx+b  1- i

For all  xi in class - 1

wTx+b  -1+ i

 

minw
wTw

2
+ Ci
i=1

n



For all i

I  0

• Instead of solving these QPs directly we will solve  a dual 

formulation of the SVM optimization problem

• The main reason for switching to this type of representation 

is that it would allow us to use a neat trick that will make our 

lives easier (and the run time faster)



An alternative (dual) 

representation of the SVM QP

• We will start with the linearly separable case

• Instead of encoding the correct classification rule 

and constraint we will use LaGrange multiplies to 

encode it as part of the our minimization problem

Min (wTw)/2 

For all  x in class +1

wTx+b  1

For all  x in class -1

wTx+b  -1

Min (wTw)/2

(wTxi+b)yi  1

Why?



An alternative (dual) 

representation of the SVM QP

• We will start with the linearly separable case

• Instead of encoding the correct classification rule a 

constraint we will use Lagrange multiplies to encode it as 

part of the our minimization problem

Min (wTw)/2

(wTxi+b)yi  1

Recall that Lagrange multipliers can be 

applied to turn the following problem:

minx x2

s.t. x  b

To

minx max x2 -(x-b)

s.t.   0 b
Global min

Allowed min



Lagrange multiplier for SVMs
Original formulation

Min (wTw)/2

(wTxi+b)yi  1

 

minw,bmax

wTw

2
−  i[(w

T x i + b)y i −1]
i



 i  0 i

Dual formulation

Using this new formulation we can derive w and b by taking the 

derivative w.r.t. w and  and setting to 0 leading to:

 

 iyi = 0
i



Finally, taking the derivative w.r.t. b we get:

 

w =  ix iy i
i



b = y i −w
T x i

for i s.t.  i  0



Dual SVM - interpretation

 

w =  ixiyi
i



For ’s that are not 

0



Dual SVM for linearly separable 

case 

i

ybx

i

i

iiibw



−+−

0

]1)w[(
2

ww
maxmin T

T

,





Dual formulation

 

w =  ix iy i
i



b = y i −w
T x i

for i s.t.  i  0

Substituting w into our target 

function and using the 

additional constraint we get:

i

y

i

i

i

jji

i

i



=

−





0

0y

y
2

1
max

i

ji,

i





 j

T

i xx

 

 iyi = 0
i





Dual SVM for linearly separable 

case 

Our dual target function:

i

y

i

i

i

jji

i

i



=

−





0

0y

y
2

1
max

i

ji,

i





 j

T

i xx

Dot product for all 

training samples 

To evaluate a new sample xk

we need to compute:
bbx ij +=+  k

T

i xx
i

i

T yw 

Dot product with 

training samples 

Is this too much computational work (for 

example when using transformation of the 

data)?



Classifying in 1-d

Can an SVM correctly 

classify this data?

What about this?

X X



Classifying in 1-d

Can an SVM correctly 

classify this data?

And now?

X X

X2



Non-linear SVMs:  2D

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Φ:  x→ φ(x)

x1
2

x2
2

2x1x2

x=(x1,x2)

• The original input space (x) can be mapped to some higher-dimensional 

feature space (φ(x) )where the training set is separable:

φ(x) =(x1
2,x2

2,2x1x2)



Non-linear SVMs:  2D

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Φ:  x→ φ(x)

x1
2

x2
2

2x1x2

x=(x1,x2)

• The original input space (x) can be mapped to some higher-dimensional 

feature space (φ(x) )where the training set is separable:

φ(x) =(x1
2,x2

2,2x1x2)

If data is mapped into sufficiently high dimension, then 

samples will in general  be linearly separable; 

N data points are in general separable in a space of N-1 

dimensions or more!!!



Transformation of Inputs
• Possible problems

- High computation burden due to high-dimensionality 

- Many more parameters

• SVM solves these two issues simultaneously

– “Kernel tricks” for efficient computation 

– Dual formulation only assigns parameters to samples, not 

features

(  )

(  )

(  )
(  )(  )

(  )

(  )
(  )

(.)
(  )

(  )

(  )

(  )
(  )

(  )

(  )

(  )
(  )

(  )

Feature spaceInput space



Quadratic kernels

 

max  i −
i

  i jyiy j
i, j

 (x i )(x j)

 iyi = 0
i



 i  0 i

• While working in higher dimensions is 

beneficial, it also increases our run time 

because of the dot product computation

• However, there is a neat trick we can use

• consider all quadratic terms for x1, x2 … xm

m is the 

number of 

features in 

each vector
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m+1 linear terms

m quadratic terms

m(m-1)/2 pairwise terms

The 2 

term will 

become 

clear in the 

next slide



Dot product for quadratic kernels
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How many operations do we need for the dot product?
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m m m(m-1)/2 =~ m2



The kernel trick
How many operations do we need for the dot product?

m m m(m-1)/2 =~ m2

However, we can obtain dramatic savings by noting that

12)()(2

12)(

1).(2).()1.(

1

22

2

22

+++=

++=

++=+

 

 

+=i ij

jiji

i

ii

i

ii
i i

iiii

zzxxzxzx

zxzx

zxzxzx

We only need m 

operations!
Note that to evaluate a new sample 

we are also using dot products so 

we save there as well
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dot product



Where we are
Our dual target function:

i

y

i

i

i

jji

i

i



=

−





0

0y

y
2

1
max

i

ji,

i





 j

T

i xx

mn2 operations at each 

iteration

To evaluate a new sample xj

we need to compute:

bbx ij +=+  xx
T

i

i

i

T yw 

mr operations where r

are the number of 

support vectors (i>0) 



Other kernels

• The kernel trick works for higher order polynomials as well.

• For example, a polynomial of degree 4 can be computed using 

(x.z+1)4 and, for a polynomial of degree d (x.z+1)d 

• Beyond polynomials there are other very high dimensional basis 

functions that can be made practical by finding the right Kernel 

Function

-Radial-Basis-style Kernel Function:

- Neural-net-style Kernel Function: 

K(x,z) = exp −
(x − z)2

2 2

 

 
 

 

 
 

 

K(x,z) = tanh(x.z−)



Dual formulation for non linearly 

separable case

Dual target function:

 

max  i −
i


1

2
 i jyiy j

i, j

 x ix j

 iyi = 0
i



C   i  0 i

To evaluate a new sample xj

we need to compute:

 

wTx j + b =  iyi
i

 x ix j + b

The only difference is 

that the I’s are now 

bounded 



Why do SVMs work?

• If we are using huge features spaces (with kernels) how come we 

are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care 

about the support vectors and these are usually a small group of 

samples

- The minimization (or the maximizing of the margin) function acts 

as a sort of regularization term leading to reduced overfitting



Software

• A list of SVM implementation can be found at 

http://www.kernel-machines.org/software.html

• Some implementation (such as LIBSVM) can handle 

multi-class classification

• SVMLight is among one of the earliest implementation of 

SVM

• Several Matlab toolboxes for SVM are also available



Multi-class classification with 

SVMs
What if we have data from more than two 

classes?

• Most common solution: One vs. all

- create a classifier for each class against 

all other data

- for a new point use all classifiers and 

compare the margin for all selected 

classes 

Note that this is not necessarily valid 

since this is not what we trained the 

SVM for, but often works well in 

practice



Applications of SVMs

• Bioinformatics

• Machine Vision

• Text Categorization

• Ranking (e.g., Google searches)

• Handwritten Character Recognition

• Time series analysis

→Lots of very successful applications!!!



Handwritten digit recognition



Important points

• Difference between regression classifiers and SVMs’

• Maximum margin principle

• Target function for SVMs

• Linearly separable and non separable cases

• Dual formulation of SVMs

• Kernel trick and computational complexity


