
Support Vector Machine

10-701

Machine Learning

Types of classifiers

• We can divide the large variety of classification approaches into roughly three major
types

1. Instance based classifiers

- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:

- build a generative statistical model

- e.g., Bayesian networks

3. Discriminative

- directly estimate a decision rule/boundary

- e.g., decision tree

Ranking classifiers

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised
Learning Algorithms, ICML 2006

Regression classifiers

Recall our regression classifiers

+1 if sign(wTx+b)0

-1 if sign(wTx+b)<0

Regression classifiers

Recall our regression classifiers

Line closer to the

blue nodes since

many of them are

far away from the

boundary

Regression classifiers

Recall our regression classifiers

 −
i

iiw xy 2T)w(min

Line closer to the

blue nodes since

many of them are

far away from the

boundary

Goes over all points

x (even for logistic

regression)

Regression classifiers

Recall our regression classifiers

Line closer to the

blue nodes since

many of them are

far away from the

boundary

Goes over all points

x (even in LR

settings)

Many more

possible classifiers

 −
i

iiw xy 2T)w(min

Max margin classifiers
• Instead of fitting all points, focus on boundary points

•Learn a boundary that leads to the largest margin from both

sets of points (that is, largest distance to the closest point on

either side)

From all the

possible boundary

lines, this leads to

the largest margin

on both sides

Max margin classifiers

• Instead of fitting all points, focus on boundary points

• Learn a boundary that leads to the largest margin from points on both

sides

D

D
Why?

• Intuitive, ‘makes

sense’

• Some theoretical

support

• Works well in practice

Max margin classifiers

• Instead of fitting all points, focus on boundary points

• Learn a boundary that leads to the largest margin from points on both

sides

D

D
Also known as linear

support vector

machines (SVMs)

These are the vectors

supporting the boundary

Specifying a max margin

classifier

Classify as +1 if wTx+b  1

Classify as -1 if wTx+b  - 1

Undefined if -1 <wTx+b < 1

Class +1 plane

boundary

Class -1 plane

Specifying a max margin

classifier

Classify as +1 if wTx+b  1

Classify as -1 if wTx+b  - 1

Undefined if -1 <wTx+b < 1

Is the linear separation

assumption realistic?

We will deal with this shortly,

but lets assume it for now

Maximizing the margin

Classify as +1 if wTx+b  1

Classify as -1 if wTx+b  - 1

Undefined if -1 <wTx+b < 1

• Lets define the width of the margin by M

• How can we encode our goal of maximizing M in terms of

our parameters (w and b)?

• Lets start with a few obsevrations

Maximizing the margin

Classify as +1 if wTx+b  1

Classify as -1 if wTx+b  - 1

Undefined if -1 <wTx+b < 1

• Observation 1: the vector w is orthogonal to the +1 plane

• Why?

Let u and v be two points on the +1 plane,

then for the vector defined by u and v we have

wT(u-v) = 0

Corollary: the vector w is orthogonal to the -1 plane

Maximizing the margin

Classify as +1 if wTx+b  1

Classify as -1 if wTx+b  - 1

Undefined if -1 <wTx+b < 1

• Observation 1: the vector w is orthogonal to the +1 and -1 planes

• Observation 2: if x+ is a point on the +1 plane and x- is the closest point

to x+ on the -1 plane then

x+ = w + x-

Since w is orthogonal to both planes

we need to ‘travel’ some distance

along w to get from x+ to x-

Putting it together

• wT x+ + b = +1

• wT x- + b = -1

• x+ = w + x-

• | x+ - x- | = M

We can now define M in

terms of w and b

wT x+ + b = +1



wT (w + x-) + b = +1



wTx- + b + wTw = +1



-1 + wTw = +1



 = 2/wTw

Putting it together

• wT x+ + b = +1

• wT x- + b = -1

• x+ = w + x-

• | x+ - x- | = M

•  = 2/wTw

We can now define M in

terms of w and b

M = |x+ - x-|







M =|w |=  |w |=| wTw



M = 2
wTw

wTw
=

2

wTw

Finding the optimal parameters



M =
2

wTw

We can now search for the optimal parameters by finding a

solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used:

Gradient descent, simulated annealing, EM

etc.

Quadratic programming (QP)

Quadratic programming solves optimization problems of the following form:



minU
uTRu

2
+ dTu+ c

subject to n inequality constraints:



a11u1 + a12u2 + ... b1

an1u1 + an2u2 + ... bn

and k equivalency constraints:



an+1,1u1 + an+1,2u2 + ...= bn+1

an+k,1u1 + an+k,2u2 + ...= bn+k

Quadratic term

When a problem can be

specified as a QP problem we

can use solvers that are better

than gradient descent or

simulated annealing

u -vector (unknown)

R – squared matrix

d – vector

c - scalar

SVM as a QP problem



minU
uTRu

2
+ dTu+ c

subject to n inequality constraints:



a11u1 + a12u2 + ... b1

an1u1 + an2u2 + ... bn

and k equivalency constraints:



an+1,1u1 + an+1,2u2 + ...= bn+1

an+k,1u1 + an+k,2u2 + ...= bn+k



M =
2

wTw

Min (wTw)/2

subject to the following inequality

constraints:

For all x in class + 1

wTx+b  1

For all x in class - 1

wTx+b  -1
}

A total of n

constraints if

we have n

input samples

Non linearly separable case
• So far we assumed that a linear plane can perfectly

separate the points

• But this is not usally the case

- noise, outliers
How can we convert this to a

QP problem?

- Minimize training errors?

min wTw

min #errors

- Penalize training errors:

min wTw+C*(#errors)

Hard to solve (two

minimization problems)

Hard to encode in a QP

problem

Non linearly separable case
• Instead of minimizing the number of misclassified points we can

minimize the distance between these points and their correct plane

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality

constraints:

For all xi in class + 1

wTx+b  1- i

For all xi in class - 1

wTx+b  -1+ i



minw
wTw

2
+ Ci
i=1

n



Wait. Are we missing

something?

These are also support vectors since

they impact the parameters of the

decision boundary

Final optimization for non

linearly separable case

-1 plane

+1 plane

jk

The new optimization problem is:

subject to the following inequality

constraints:

For all xi in class + 1

wTx+b  1- i

For all xi in class - 1

wTx+b  -1+ i



minw
wTw

2
+ Ci
i=1

n



For all i

I  0

} A total of n

constraints

} Another n

constraints

Where we are
Two optimization problems: For the separable and non separable cases

For all x in class + 1

wTx+b  1

For all x in class - 1

wTx+b  -1

For all xi in class + 1

wTx+b  1- i

For all xi in class - 1

wTx+b  -1+ i



minw
wTw

2
+ Ci
i=1

n



For all i

I  0



minw
wTw

2

Where we are
Two optimization problems: For the separable and non separable cases

Min (wTw)/2

For all x in class + 1

wTx+b  1

For all x in class - 1

wTx+b  -1

For all xi in class + 1

wTx+b  1- i

For all xi in class - 1

wTx+b  -1+ i



minw
wTw

2
+ Ci
i=1

n



For all i

I  0

• Instead of solving these QPs directly we will solve a dual

formulation of the SVM optimization problem

• The main reason for switching to this type of representation

is that it would allow us to use a neat trick that will make our

lives easier (and the run time faster)

An alternative (dual)

representation of the SVM QP

• We will start with the linearly separable case

• Instead of encoding the correct classification rule

and constraint we will use LaGrange multiplies to

encode it as part of the our minimization problem

Min (wTw)/2

For all x in class +1

wTx+b  1

For all x in class -1

wTx+b  -1

Min (wTw)/2

(wTxi+b)yi  1

Why?

An alternative (dual)

representation of the SVM QP

• We will start with the linearly separable case

• Instead of encoding the correct classification rule a

constraint we will use Lagrange multiplies to encode it as

part of the our minimization problem

Min (wTw)/2

(wTxi+b)yi  1

Recall that Lagrange multipliers can be

applied to turn the following problem:

minx x2

s.t. x  b

To

minx max x2 -(x-b)

s.t.   0 b
Global min

Allowed min

Lagrange multiplier for SVMs
Original formulation

Min (wTw)/2

(wTxi+b)yi  1



minw,bmax

wTw

2
−  i[(w

T x i + b)y i −1]
i



 i  0 i

Dual formulation

Using this new formulation we can derive w and b by taking the

derivative w.r.t. w and  and setting to 0 leading to:



 iyi = 0
i



Finally, taking the derivative w.r.t. b we get:



w =  ix iy i
i



b = y i −w
T x i

for i s.t.  i  0

Dual SVM - interpretation



w =  ixiyi
i



For ’s that are not

0

Dual SVM for linearly separable

case

i

ybx

i

i

iiibw



−+−

0

]1)w[(
2

ww
maxmin T

T

,





Dual formulation



w =  ix iy i
i



b = y i −w
T x i

for i s.t.  i  0

Substituting w into our target

function and using the

additional constraint we get:

i

y

i

i

i

jji

i

i



=

−





0

0y

y
2

1
max

i

ji,

i





 j

T

i xx



 iyi = 0
i



Dual SVM for linearly separable

case

Our dual target function:

i

y

i

i

i

jji

i

i



=

−





0

0y

y
2

1
max

i

ji,

i





 j

T

i xx

Dot product for all

training samples

To evaluate a new sample xk

we need to compute:
bbx ij +=+  k

T

i xx
i

i

T yw 

Dot product with

training samples

Is this too much computational work (for

example when using transformation of the

data)?

Classifying in 1-d

Can an SVM correctly

classify this data?

What about this?

X X

Classifying in 1-d

Can an SVM correctly

classify this data?

And now?

X X

X2

Non-linear SVMs: 2D

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Φ: x→ φ(x)

x1
2

x2
2

2x1x2

x=(x1,x2)

• The original input space (x) can be mapped to some higher-dimensional

feature space (φ(x))where the training set is separable:

φ(x) =(x1
2,x2

2,2x1x2)

Non-linear SVMs: 2D

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Φ: x→ φ(x)

x1
2

x2
2

2x1x2

x=(x1,x2)

• The original input space (x) can be mapped to some higher-dimensional

feature space (φ(x))where the training set is separable:

φ(x) =(x1
2,x2

2,2x1x2)

If data is mapped into sufficiently high dimension, then

samples will in general be linearly separable;

N data points are in general separable in a space of N-1

dimensions or more!!!

Transformation of Inputs
• Possible problems

- High computation burden due to high-dimensionality

- Many more parameters

• SVM solves these two issues simultaneously

– “Kernel tricks” for efficient computation

– Dual formulation only assigns parameters to samples, not

features

()

()

()
()()

()

()
()

(.)
()

()

()

()
()

()

()

()
()

()

Feature spaceInput space

Quadratic kernels



max  i −
i

  i jyiy j
i, j

 (x i)(x j)

 iyi = 0
i



 i  0 i

• While working in higher dimensions is

beneficial, it also increases our run time

because of the dot product computation

• However, there is a neat trick we can use

• consider all quadratic terms for x1, x2 … xm

m is the

number of

features in

each vector

mm

m

m

xx

xx

x

x

x

x

x

1

21

2

21

1

2

2

)(

)(

2

2

1

)(

−

=






m+1 linear terms

m quadratic terms

m(m-1)/2 pairwise terms

The 2

term will

become

clear in the

next slide

Dot product for quadratic kernels

mm

m

mm

m

zz

zz

x

z

z

z

xx

xx

x

x

x

x

zx

1

21

2

21

2

1

1

21

2

21

1

1

2

2

)(

)(

2

2

1

2

2

)(

)(

2

2

1

)()(

−−

•

=













How many operations do we need for the dot product?

12)()(2
1

22
+++=  

+=i ij

jijii

i

i

i

ii zzxxzxzx

m m m(m-1)/2 =~ m2

The kernel trick
How many operations do we need for the dot product?

m m m(m-1)/2 =~ m2

However, we can obtain dramatic savings by noting that

12)()(2

12)(

1).(2).()1.(

1

22

2

22

+++=

++=

++=+

 

 

+=i ij

jiji

i

ii

i

ii
i i

iiii

zzxxzxzx

zxzx

zxzxzx

We only need m

operations!
Note that to evaluate a new sample

we are also using dot products so

we save there as well

12)()(2
1

22
+++=  

+=i ij

jijii

i

i

i

ii zzxxzxzx

dot product

Where we are
Our dual target function:

i

y

i

i

i

jji

i

i



=

−





0

0y

y
2

1
max

i

ji,

i





 j

T

i xx

mn2 operations at each

iteration

To evaluate a new sample xj

we need to compute:

bbx ij +=+  xx
T

i

i

i

T yw 

mr operations where r

are the number of

support vectors (i>0)

Other kernels

• The kernel trick works for higher order polynomials as well.

• For example, a polynomial of degree 4 can be computed using

(x.z+1)4 and, for a polynomial of degree d (x.z+1)d

• Beyond polynomials there are other very high dimensional basis

functions that can be made practical by finding the right Kernel

Function

-Radial-Basis-style Kernel Function:

- Neural-net-style Kernel Function:

K(x,z) = exp −
(x − z)2

2 2













K(x,z) = tanh(x.z−)

Dual formulation for non linearly

separable case

Dual target function:



max  i −
i


1

2
 i jyiy j

i, j

 x ix j

 iyi = 0
i



C   i  0 i

To evaluate a new sample xj

we need to compute:



wTx j + b =  iyi
i

 x ix j + b

The only difference is

that the I’s are now

bounded

Why do SVMs work?

• If we are using huge features spaces (with kernels) how come we

are not overfitting the data?

- Number of parameters remains the same (and most are set to 0)

- While we have a lot of input values, at the end we only care

about the support vectors and these are usually a small group of

samples

- The minimization (or the maximizing of the margin) function acts

as a sort of regularization term leading to reduced overfitting

Software

• A list of SVM implementation can be found at

http://www.kernel-machines.org/software.html

• Some implementation (such as LIBSVM) can handle

multi-class classification

• SVMLight is among one of the earliest implementation of

SVM

• Several Matlab toolboxes for SVM are also available

Multi-class classification with

SVMs
What if we have data from more than two

classes?

• Most common solution: One vs. all

- create a classifier for each class against

all other data

- for a new point use all classifiers and

compare the margin for all selected

classes

Note that this is not necessarily valid

since this is not what we trained the

SVM for, but often works well in

practice

Applications of SVMs

• Bioinformatics

• Machine Vision

• Text Categorization

• Ranking (e.g., Google searches)

• Handwritten Character Recognition

• Time series analysis

→Lots of very successful applications!!!

Handwritten digit recognition

Important points

• Difference between regression classifiers and SVMs’

• Maximum margin principle

• Target function for SVMs

• Linearly separable and non separable cases

• Dual formulation of SVMs

• Kernel trick and computational complexity

