Reading: Chapter 2 of Koller&Friedman

BN Semantics 2 — The revenge of d-separation

Graphical Models – 10708

Carlos Guestrin

Carnegie Mellon University

September 19th, 2005

Announcements

- Homework 1:
 - □ Out already
 - □ Due October 3rd **beginning of class!**
 - □ It's hard start early, ask questions

The BN Representation Theorem

If conditional independencies in BN are subset of conditional independencies in P

I map of P

Obtain

Obtain

Joint probability to G distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Pfact. ac. G

If joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Bris I-map P

Then conditional independencies in BN are subset of conditional independencies in *P*

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - \square (X_i \perp NonDescendants_{Xi} | **Pa**_{Xi})
- But then we talked about other (in)dependencies
 - □ e.g., explaining away

- What are the independencies encoded by a BN?
 - □ Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs

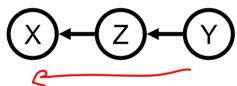
BNs with 3 nodes

Indirect causal effect:

$$X \rightarrow Z \rightarrow Y$$

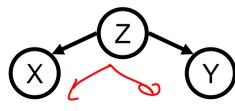
VOT (XTX) (XTX/S)

Indirect evidential effect:



Not $(XT\lambda)$ $(XT\lambda(5)$

Common cause:

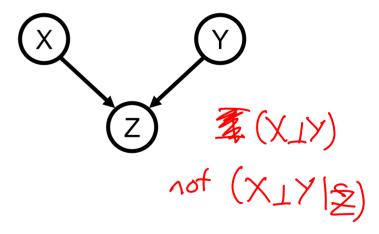


 $vot(XT\lambda)$

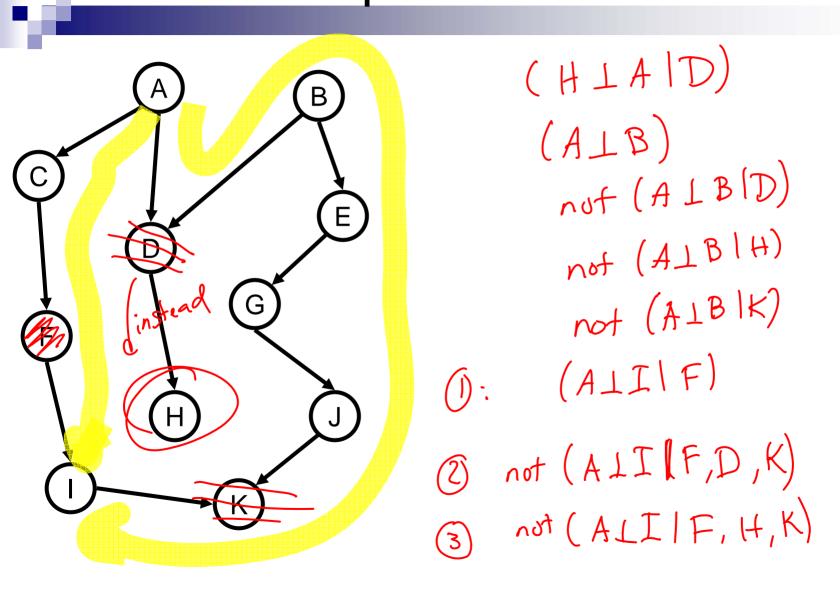
Local Markov Assumption:

A variable X is independent of its non-descendants given its parents

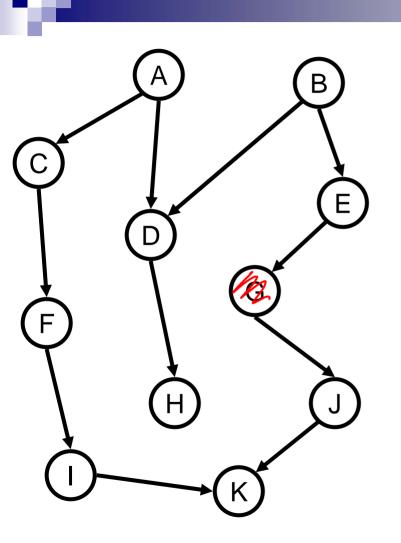
Common effect:



Understanding independencies in BNsSome examples



Understanding independencies in BNs – Some more examples



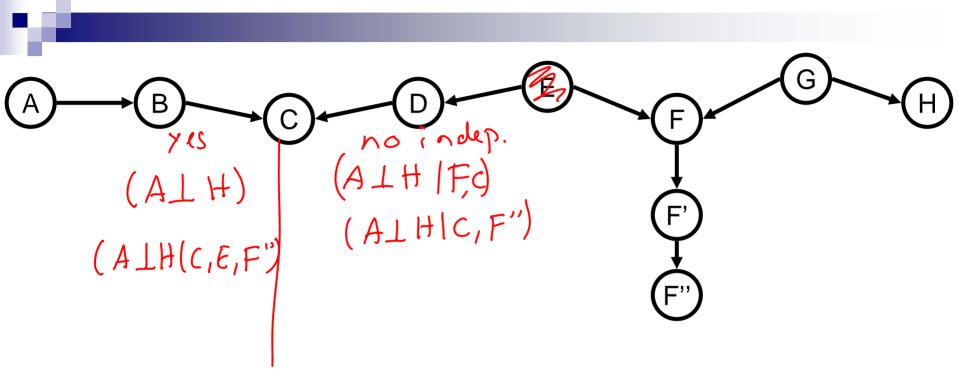
```
(ALB)

not (ALB | H)

not (ALB | K)

(ALB | K,G)
```

An active trail – Example



When are A and H independent?

Active trails formalized

- A path $X_1 X_2 \cdots X_k$ is an active trail when variables $O \subseteq \{X_1, \dots, X_n\}$ are observed if for each consecutive triplet in the trail:
 - $\square X_{i-1} \rightarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin \mathbf{O})$
 - $\square X_{i-1} \leftarrow X_i \leftarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
 - $\square X_{i-1} \leftarrow X_i \rightarrow X_{i+1}$, and X_i is **not observed** $(X_i \notin O)$
- 1/- Structure
 - $\square X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, and X_i is observed $(X_i \in O)$, or one of its descendents

Active trails and independence?

Xi and Xi are d-SLP given Z, if no active trail exists given Z

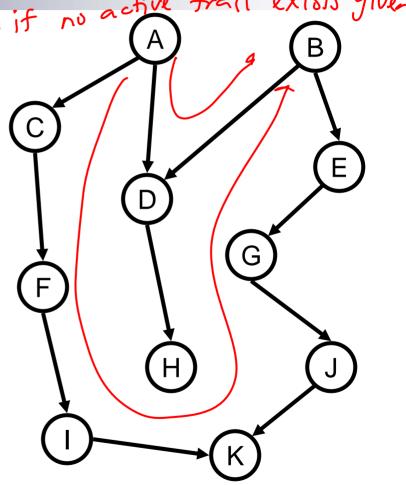
■ Theorem: Variables X_i and X_j are independent given $Z \subseteq \{X_1, ..., X_n\}$ if the is no active trail between X_i and X_j when variables

 $\mathbf{Z}\subseteq\{X_1,\ldots,X_n\}$ are observed:

□ i.e.,
$$(\mathbf{X}_{i} \perp \mathbf{X}_{j} \mid \mathbf{Z}) \subseteq \mathbf{I}(P)$$

$$(A \perp B)$$

$$(A \perp B \mid K)$$

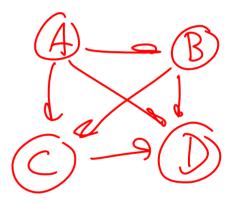


Two interesting (trivial) special cases

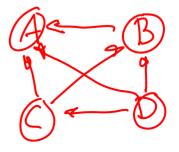
Edgeless Graph

all vars (and subsets)

Complete Graph



no indep.



More generally:

local Markov Ie(G) assump. Ie(G)

Soundness of d-separation

- Given BN structure G
- Set of independence assertions obtained by d-separation:
 - $\square \mathbf{I}(G) = \{(\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : d\text{-sep}_G(\mathbf{X}; \mathbf{Y} | \mathbf{Z})\}$
- Theorem: Soundness of d-separation
 - \square If P factorizes over G then $I(G)\subseteq I(P)$
- Interpretation: d-separation only captures true independencies
- Proof discussed when we talk about undirected models

Existence of dependency when not d-separated ^of d-separated

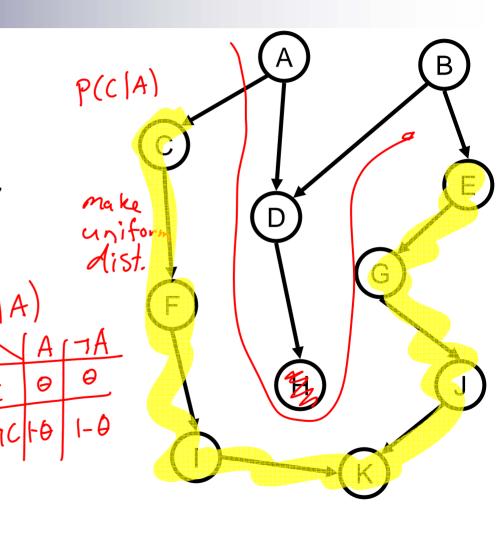
■ **Theorem:** If X and Y are not d-separated given **Z**, then X and Y are dependent given **Z** under some *P* that factorizes over *G*

Proof sketch:

Choose an active trailbetween X and Y given Z

□ Make this trail dependent 70 F6

Make all else uniform (independent) to avoid "canceling" out influence



Add edges doesnit hurt

$$I_{R}(G)\subseteq \overline{I}(P)$$
 \longrightarrow P factorizes acc. to G

Start with G Where $\overline{I}_{R}(G)\subseteq \overline{I}(P)$ in G $(B1A|X)$

in G $(B1Y|X)$

in G' $(B1Y|A,X)$

what was if add edge to G call it G'
 $\overline{I}_{R}(G')\subseteq \overline{I}(G)\subseteq \overline{I}(P)$

More generally:

$A \rightarrow B$ P(B(A)=P(B)+A

Completeness of d-separation

- Theorem: Completeness of d-separation
 - ☐ For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
 - □ "almost all" distributions: except for a set of measure zero of parameterizations of the CPTs (assuming no finite set of parameterizations has positive measure)

■ Proof sketch:
$$(A \rightarrow B)$$
 $P(A=a) = \Theta a$

if $(A \perp B)$ $P(A=7a) = 100$
 $P(A,B) = P(A) \cdot P(B|A) = P(A) \cdot P(B) \cdot AB \cdot P(B=b|A=a) = 0$
 $P(A=7a) = 100$
 $P(A=7$

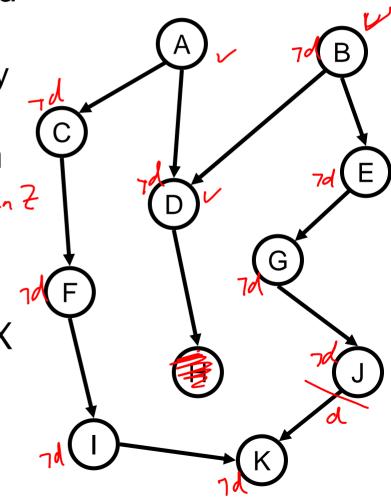
Interpretation of completeness

- Theorem: Completeness of d-separation
 - \square For "almost all" distributions that P factorize over to G, we have that I(G) = I(P)
- BN graph is usually sufficient to capture all independence properties of the distribution!!!!
- But only for complete independence:
 - $\square P \models (X=x\bot Y=y \mid Z=z), \forall x\in Val(X), y\in Val(Y), z\in Val(Z)$
- Often we have context-specific independence (CSI)
 - $\square \exists x \in Val(X), y \in Val(Y), z \in Val(Z): P \models (X=x \perp Y=y \mid Z=z)$
 - Many factors may affect your grade
 - □ But if you are a frequentist, all other factors are irrelevant ☺

Algorithm for d-separation

B

- How do I check if X and Y are dseparated given Z
 - □ There can be exponentially-many trails between X and Y
- Two-pass linear time algorithm finds all d-separations for X given ?
- 1. Upward pass
 - ☐ Mark descendants of Z
- 2. Breadth-first traversal from X
 - □ Stop traversal at a node if trail is "blocked"
 - (Some tricky details apply see reading)



Building BNs from independence properties

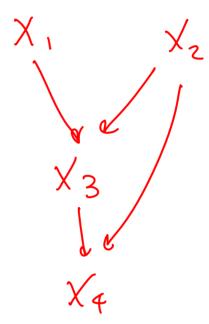
- From d-separation we learned:
 - Start from local Markov assumptions, obtain all independence assumptions encoded by graph
 - \square For most P's that factorize over G, I(G) = I(P)
 - □ All of this discussion was for a given *G* that is an I-map for *P*
- Now, give me a *P*, how can I get a *G*?
 - \square i.e., give me the independence assumptions entailed by P
 - □ Many G are "equivalent", how do I represent this?
 - Most of this discussion is not about practical algorithms, but useful concepts that will be used by practical algorithms

Minimal I-maps

- One option:
 - \square G is an I-map for P
 - □ G is as simple as possible
- G is a minimal I-map for P if deleting any edges from G makes it no longer an I-map

Obtaining a minimal I-map

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i, Pa_{Xi}, in graph as the minimal subset of {X₁,...,X_{i-1}} such that local Markov assumption holds X_i independent of rest of {X₁,...,X_{i-1}}, given parents Pa_{Xi}
 - □ Define/learn CPT P(X_i| Pa_{Xi})

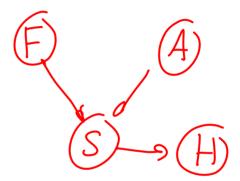


Minimal I-map not unique (or minimal)

- Given a set of variables and conditional independence assumptions
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n
 - □ Add X_i to the network
 - □ Define parents of X_i , \mathbf{Pa}_{X_i} , in graph as the minimal subset of $\{X_1, ..., X_{i-1}\}$ such that local Markov assumption holds $-X_i$ independent of rest of $\{X_1, ..., X_{i-1}\}$, given parents \mathbf{Pa}_{X_i}

□ Define/learn CPT – P(X_i| Pa_{Xi})

Flu, Allergy, SinusInfection, Headache



order: HASF

Perfect maps (P-maps)

I-maps are not unique and often not simple enough

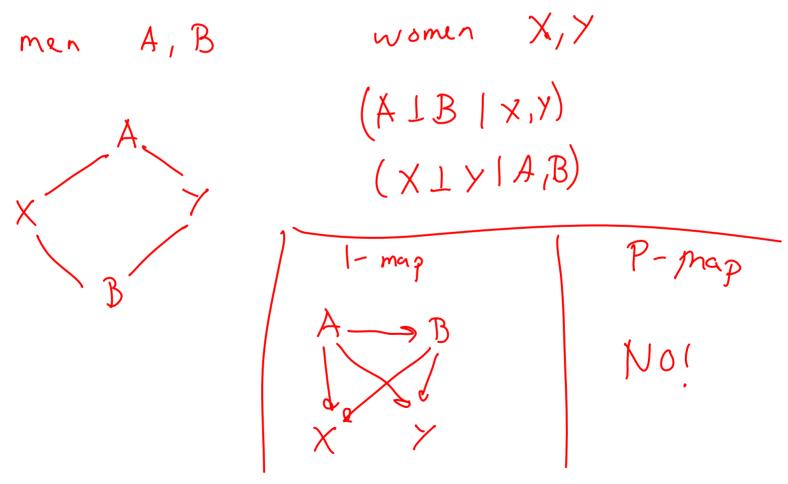
- Define "simplest" G that is I-map for P
 - \square A BN structure G is a **perfect map** for a distribution P if I(P) = I(G)
- Our goal:
 - □ Find a perfect map!
 - Must address equivalent BNs

Inexistence of P-maps 1

XOR (this is a hint for the homework)

Inexistence of P-maps 2

(Slightly un-PC) swinging couples example



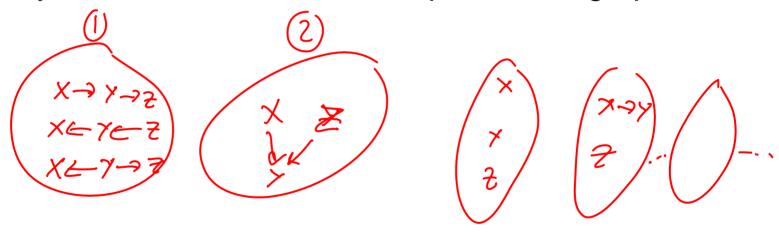
Obtaining a P-map

Given the independence assertions that are true for P

- Assume that there exists a perfect map G*
 - Want to find G*
- Many structures may encode same independencies as G*, when are we done?
 - □ Find all equivalent structures simultaneously!

I-Equivalence

- Two graphs G_1 and G_2 are **I-equivalent** if $I(G_1) = I(G_2)$
- Equivalence class of BN structures
 - Mutually-exclusive and exhaustive partition of graphs



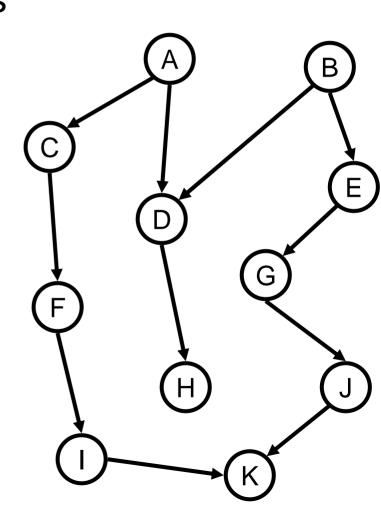
How do we characterize these equivalence classes?

Skeleton of a BN

Skeleton of a BN structure G is an undirected graph over the same variables that has an edge X−Y for every X→Y or Y→X in G

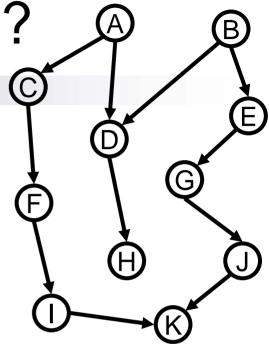
(Little) Lemma: Two Iequivalent BN structures must have the same skeleton

counter example



What about V-structures?

V-structures are key property of BN structure



■ **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent

Same V-structures not necessary

■ **Theorem:** If G_1 and G_2 have the same skeleton and V-structures, then G_1 and G_2 are I-equivalent

Though sufficient, same V-structures not necessary

Immoralities & I-Equivalence

- Key concept not V-structures, but "immoralities" (unmarried parents ©)
 - $\square X \rightarrow Z \leftarrow Y$, with no arrow between X and Y
 - □ Important pattern: X and Y independent given their parents, but not given Z
 - □ (If edge exists between X and Y, we have *covered* the V-structure)
- **Theorem:** G_1 and G_2 have the same skeleton and immoralities if and only if G_1 and G_2 are I-equivalent

Obtaining a P-map

- Given the independence assertions that are true for P
 - Obtain skeleton
 - Obtain immoralities
- From skeleton and immoralities, obtain every (and any) BN structure from the equivalence class

Identifying the skeleton 1

■ When is there an edge between X and Y?

When is there no edge between X and Y?

Identifying the skeleton 2

- Assume d is max number of parents (d could be n)
- For each X_i and X_i
 - $\square E_{ii} \leftarrow true$
 - \square For each $\mathbf{U} \subseteq \mathbf{X} \{X_i, X_i\}, |\mathbf{U}| \le 2d$
 - Is (X_i ⊥ X_j | U) ?
 - \Box $E_{ij} \leftarrow true$
 - □ If E_{ii} is true
 - Add edge X Y to skeleton

Identifying immoralities

- Consider X Z Y in skeleton, when should it be an immorality?
- Must be $X \rightarrow Z \leftarrow Y$ (immorality):
 - \square When X and Y are **never independent** given **U**, if $Z \in U$
- Must **not** be $X \rightarrow Z \leftarrow Y$ (not immorality):
 - □ When there exists U with Z∈U, such that X and Y are independent given U

From immoralities and skeleton to BN structures

Representing BN equivalence class as a partially-directed acyclic graph (PDAG)

- Immoralities force direction on other BN edges
- Full (polynomial-time) procedure described in reading

What you need to know

- Definition of a BN
- Local Markov assumption
- The representation theorem: G is an I-map for P if and only if P factorizes according to G
- d-separation sound and complete procedure for finding independencies
 - (almost) all independencies can be read directly from graph without looking at CPTs
- Minimal I-map
 - every P has one, but usually many
- Perfect map
 - better choice for BN structure
 - □ not every *P* has one
 - □ can find one (if it exists) by considering I-equivalence
 - Two structures are I-equivalent if they have same skeleton and immoralities