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Anhouncements
" A
m Homework 1:
Out already

Due October 3" — beginning of class!
It's hard — start early, ask questions
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Independencies encoded in BN
" A
m We said: All you need is the local Markov
assumption
(X; L NonDescendants,; | Pay;)

m But then we talked about other (in)dependencies
e.g., explaining away

m \WWhat are the independencies encoded by a BN?
Only assumption is local Markov

But many others can be derived using the algebra of
conditional independencies!!!



Understanding independencies in BNs
— BNs with 3 nodes[Local markov Assumption:
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Understanding independencies in BNs

— Some examPIes
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Understanding independencies in BNs

— Some more examples
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An active trall — Example
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When are A and H independent?



Active trails formalized

- -_
ai) : : :
m Apath X; —X,—- - =XIs an active trail when
variables OC{X,,...,X,} are observed If for each
consecutive triplet in the trall:

X ;—>X—>X.,1, and X; is not observed (X;zO)

X 1< Xi«—X., 1, and X; Is not observed (X,20)

X 1< Xi—>X.,1, and X; is not observed (X;zO)

\/r S“'VM,C'[‘MV‘L
X 1= X«X.,,,and X Is observed (X,€O), or one of

Its descendents



Active trails and independence?

= m? SO E o acha Freil exists 9iven £

m Theorem: Variables X; and . (8)
X; are independent given
ZC{Xq,...,. X }iftheis no
active trail between X; and
X; when variables
ZC{X4,...,X,} are observed:

e, (XL X |Z)CI(P)
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Two Interesting (trivial) special cases
" S

Edgeless Graph Complete Graph
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More generally: bocel Ppter To (o)
__Soundness of d-separation
N

m Given BN structure G

m Set of iIndependence assertions obtained by
d-separation:
I(G) = {(XLY|Z) : d-seps(X;Y|2)}

m Theorem: Soundness of d-separation
If P factorizes over G then I(G)CI(P)

m Interpretation: d-separation only captures true
Independencies

m Proof discussed when we talk about undirected models



Existence of dependency when not

_ d-segarated not desepe (A1BI)

A

m Theorem: If Xand Y are an
not d-separated given Z, ~
then X and Y are @-f)
dependent given Z under Pala
some P that factorizes canifors
over G ) A{S%fi A
= Proof sketch: ?(CK’; o %3
Choose an active trail — [, o \
between X and Y given ZC/—-—”O x
Make this trail dependent ¢ - ()

Make all else uniform
(independent) to avoid
“canceling” out influence
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: — Pa)
More generally: AR R = PB)

] Comgleteness of d-separation

m Theorem: Completeness of d-separation

For “almost all” distributions that P factorize over to G, we
have that I(G) = I(P)
“almost all” distributions: except for a set of measure zero of
parameterizations of the CPTs (assuming no finite set of
parameterizations has positive measure)
m Proof sketch: @-9 ) ?(A”)\'f'),.;;
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Interpretation of completeness
"
m Theorem: Completeness of d-separation
For “almost all” distributions that P factorize over to G, we
have that I(G) = I(P)
m BN graph is usually sufficient to capture all
Independence properties of the distribution!!!!

m But only for complete independence:
P E(X=xLY=y | Z=2), ¥ xeVal(X), yeVal(Y), zeVal(Z)

m Often we have context-specific independence (CSI)
1 xeVal(X), yeVal(Y), zeVal(2): P F(X=x_LY=y | Z=2)
Many factors may affect your grade
But if you are a frequentist, all other factors are irrelevant ©
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Algorithm for d-separation ¢—.{—/
" A ‘L“ z
m How do | check if X and Y are d-

separated given Z

There can be exponentially-many 1
trails between X and Y y

m Two-pass linear time algorithm
finds all d-separations for Xak)(vm 2

m 1. Upward pass
Mark deséendants of Z .

m 2. Breadth-first traversal from X

Stop traversal at a node if trail is
“blocked”

(Some tricky details apply —see 14\
reading)




Building BNs from independence

] Hrogerties

m From d-separation we learned:

Start from local Markov assumptions, obtain all
Independence assumptions encoded by graph

For most P’s that factorize over G, I(G) = I(P)
All of this discussion was for a given G that is an I-map for P

m Now, give me a P, how can | geta G?
l.e., give me the independence a"“é%éﬁﬁ%nans entailed by P
Many G are “equivalent”, how do | represent this?

Most of this discussion is not about practical algorithms, but
useful concepts that will be used by practical algorithms



Minimal I-maps
"
m One option:

G is an I-map for P
G Is as simple as possible

m Gis aminimal I-map for P if deleting any edges
from G makes it no longer an I-map
oivin’ (AL B) wantt A B
(ALEID) \

v
0
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Obtaining a minimal I-map

" A
m Given a set of variables and

cond|§L9 al mdependence

m Choose an ordering on
variables, e.g., X;, ..., X
m Fori=1ton

Add X; to the network

Define parents of X, Pay, In
graph as the minimal subset of
{X{,...,X{} such that local
Markov assumption holds — X;
independent of rest of
{X{,...,Xi1}, given parents Pay

Define/learn CPT — P(X|| Pay)

n



Minimal I-map not unigue (or minimal)
"

m Given a set of variables and Flu, Allergy, Sinusinfection, Headache

conditional independence

assumptions 5 @
m Choose an ordering on /

variables, e.g., Xy, ..., X, S @

m Fori=1ton

Add X; to the network ord- H A S F
Define parents of X, Pay, In

graph as the minimal subset of H 7\\:
{X{,...,X: 1} such that local N <
Markov assumption holds — X \1
iIndependent of rest of /
{X{,...,Xi1}, given parents Pay A

Define/learn CPT — P(X|| Pay)



Perfect maps (P-maps)
" A
m |-maps are not unigue and often not simple
enough

m Define “simplest” G that is I-map for P

A BN structure G is a perfect map for a distribution P
if I(P) =1(G)

m Our goal:
Find a perfect map!
Must address equivalent BNs



Inexistence of P-maps 1
" J
m XOR (this Is a hint for the homework)

A B, C .E);/\a.v‘ﬂ : C = A xrB
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Inexistence of P-maps 2
" A
m (Slightly un-PC) swinging couples example

Mmaen A/P) W omin X/>/
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N 3 / f | /hep
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Obtaining a P-map
" J
m Given the independence assertions that are true
for P

m Assume that there exists a perfect map G
Want to find G

m Many structures may encode same
independencies as G, when are we done?

Find all equivalent structures simultaneously!



. X = /V —2
l-Equivalence X 72
"
m Two graphs G, and G, are I-equivalent if I(G,) = I(G,)
m Equivalence class of BN structures
Mutually-exclusive and exhaustive partition of graphs

m How do we characterize these equivalence classes?



Skeleton of a BN

" J

m Skeleton of a BN structure G is
an undirected graph over the
same variables that has an
edge X-Y for every X—Y or o
Y—=XInG

m (Little) Lemma: Two I-
equivalent BN structures must

have the same skeleton
Co WRTLY 0_any\z |




What about V-structures? &
" J
m V-structures are key property of BN
structure

m Theorem: If G; and G, have the same
skeleton and V-structures, then G, and
G, are I-equivalent




Same V-structures not necessary

"

m Theorem: If G; and G, have the same skeleton and
V-structures, then G, and G, are I-equivalent

m Though sufficient, same V-structures not necessary

4B A8
\/ v/
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Immoralities & I-Equivalence
" J
m Key concept not V-structures, but “immoralities”
(unmarried parents ©)
X — Z + Y, with no arrow between X and Y

Important pattern: X and Y independent given their
parents, but not given Z

(If edge exists between X and Y, we have covered the
V-structure)
m Theorem: G, and G, have the same skeleton
and immoralities If and only if G, and G, are
l-equivalent



Obtaining a P-map
" J
m Given the independence assertions that are true
for P

Obtain skeleton
Obtain immoralities

m From skeleton and immoralities, obtain every
(and any) BN structure from the equivalence
class



ldentifying the skeleton 1
" A
m When Is there an edge between X and Y?

m When Is there no edge between X and Y?



ldentifying the skeleton 2
" J

m Assume d is max number of parents (d could be n)

m For each X; and X
E; < true
For each UC X — {X;, X}, [U|< 2d
m s (X, LX|U)?
Eij + true
If E; Is true
s Add edge X — Y to skeleton



ldentifying immoralities

" J

m Consider X — Z —Y In skeleton, when should it be
an immorality?

m Must be X — Z « Y (immorality):
When X and Y are never independent given U, if ZeU

m Must not be X — Z < Y (not immorality):

When there exists U with Z€U, such that X and Y are
Independent given U



From immoralities and skeleton to
BN structures
" B

m Representing BN equivalence class as a
partially-directed acyclic graph (PDAG)

m Immoralities force direction on other BN edges

m Full (polynomial-time) procedure described In
reading



What you need to know
" J

Definition of a BN
Local Markov assumption

The representation theorem: G is an I-map for P if and
only if P factorizes according to G

d-separation — sound and complete procedure for finding
Independencies

(almost) all independencies can be read directly from graph
without looking at CPTs

Minimal I-map
every P has one, but usually many

Perfect map
better choice for BN structure
not every P has one
can find one (if it exists) by considering I-equivalence

Two structures are l-equivalent if they have same skeleton and
immoralities
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