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Learning Graphical Models

The goal:

Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
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Learning Graphical Models

e Scenarios:
e completely observed GMs
directed
undirected
e partially or unobserved GMs
directed
undirected (an open research topic)
e Estimation principles:
e Maximal likelihood estimation (MLE)
e Bayesian estimation
e Maximal conditional likelihood
e Maximal "Margin"
e Maximum entropy

e We use learning as a name for the process of estimating the parameters,
and in some cases, the topology of the network, from data.
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ML Parameter Est. for
completely observed GMs of
given structure

e The data:
{(z(l),x(l))’ (Z(Z),X(z)), (2(3),)((3))’ (Z(N),X(N))}
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Parameter Learning 2

e Assume G is known and fixed,
e from expert design
e from an intermediate outcome of iterative structure learning

e Goal: estimate from a dataset of Nindependent, identically
distributed (jid) training cases D = {x®, ..., x\)},

e In general, each training case x'") = (x\", ... .. ") is a

vector of M values, one per node,

e the model can be completely observable, i.e., every element in x, is
known (no missing values, no hidden variables),

e or, partially observable, i.e., 3i, s.t. #;" is not observed.

e In this lecture we consider learning parameters for a
single node.
-- Often known as “density estimation”
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Density Estimation &
o . N
e A Density Estimator learns a mapping from a set of attributes
to a Probability
Input ’ Density N .
Attributes } Estimator Probability
e Often know as parameter estimation if the distribution form is
specified
e Binomial, Gaussian ...
e Four important issues:
e Nature of the data (iid, correlated, ...)
e Objective function (MLE, MAP, Margin ...)
e Algorithm (simple algebra, gradient methods, EM, ...)
e Evaluation scheme (likelihood on test data, predictability, consistency, ...)
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Discrete Distributions °

e Bernoulli distribution: Ber(p)

_J1-p forx=0 . . ‘
P<X>{p forxol = Px)=p-p) &

e Multinomial distribution: Mult(1, 6)

e Multinomial (indicator) variable:

X
X, X, =[01], and XX, =
JelL...6] —
X = ))? where -
f | -
X =1lwp. 6, 20,=1. = -
)(5 J p J i ‘6{ \'..‘f .
)(6 g

px())) = P({XJ =1,where j index the dice-face})
=0,=0,"x0"x0,%x0,"" = [ 109, =0
k
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Continuous Distributions

e Uniform Probability Density Function

px)=1(b-a) fora<x<b
=0 elsewhere

e Normal (Gaussian) Probability Density Function

1

p(x)=

Jero
e The distribution is symmetric, and is often illustrated as a bell-shaped curve.
e Two parameters,  (mean) and o (standard deviation), determine the location and shape of

the distribution.
e The highest point on the normal curve is at the mean, which is also s
e The mean can be any numerical value: negative, zero, or positive. | @

- e (x-u)? 12062

e Multivariate Gaussian

- 1 [ 1 el A}
X; [1,E) = v expl —— (X — ) =7(X -
P(X; i, %) () exp) 2( Sz (X - )
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Density Estimation Schemes s

- Learn ) Score
Algorithm
parameters param

Maximum likelihood Analytical 10
(x®,...,x®) Bayesian Gradient 103
(... ) tional likel
Conditional likelihood EM 10715
- - Margin Sampling
xx™,.xy))

Entropy @I o .
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Parameter Learning from iid Data

\
e Goal: estimate distribution parameters 6 from a dataset of N
independent, identically distributed (iid), fully observed, training
cases
D - {JII ]I. . J,Inl-}

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(#) as the likelihood of the data:

L(#) =P(x®,x®,...,xN):0)
=P(xY;0)P(x?;0),...,P(x";0)
=[1..Pe%:0)

3. pick the setting of parameters most likely to have generated the data we saw:

6 =arg max L() = argmaxlogL()
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Example: Bernoulli model o

e Data:
e We observed Niid coin tossing: 0={1,0, 1, ..., 0}

e Representation:

Binary r.v: x" e{0,1}

e Model: P(x):{l_g forx=0

—_ X1 _ p\-x
0  forx=1 = PK=011-9)

e How to write the likelihood of a single observation x(?
P(x")=0"" (1- )"

e The likelihood of datasetD={x;, ..., x\}:

N
1-x{)

® @ W™y T O 1oy T (0 1 oyix® ) _ o2 B 2K e il
Px@x@ . x™M o) =TTPxV o) =] [l&* @-0)"")=6= (1-0) = 0" (1-9)
i=1 i=1
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Maximum Likelihood Estimation

e Objective function:
/(0;D)=1logP(D|0)=logd™ (1-6)" =n, logé+ (N —n,)log(l-0)
e We need to maximize this w.r.t. 6

e Take derivatives wrt 0

o¢ n, N-n, ~ n ~ 1 i

= —h =0 — _ - = 0]

00 0 1-0 Oie = N OrHMLE_NZX

I
Frequency as
sample mean
¢ Sufficient statistics
e The counts,, wheren, = Zi x",  are sufficient statistics of data D
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Overfitting

e Recall that for Bernoulli Distribution, we have

head
éhead o n
ML nhead Jrﬂfa//

¢ What if we tossed too few times so that we saw zero head?

We have 4/«“ =0, and we will predict that the probability of
seeing a head next is zero!!!

e Frequentist vs. Bayesian estimate
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Bayesian Parameter Estimation

e Treat the distribution parameters 8 also as a random variable
e The a posteriori distribution of 8 after seem the data is:

p(0|D)=P(P12)p(O) __ p(D10)p(0)
PD)  [p(D]6)p(O)de

This is Bayes Rule

likelihood x prior

posterior = SSTTTTINT
marginal likelihood

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418

The prior p(.) encodes our prior knowledge about the domain
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Frequentist Parameter Estimation | :°

Two people with different priors p(6) will end up with
different estimates p(4D).

e Frequentists dislike this “subjectivity”.

e Frequentists think of the parameter as a fixed, unknown
constant, not a random variable.

e Hence they have to come up with different "objective"
estimators (ways of computing from data), instead of using
Bayes’ rule.

e These estimators have different properties, such as being “unbiased”,
“minimum variance”, etc.

e The maximum likelihood estimator, is one such estimator, which is
simple and has good statistical properties.
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Discussion

6 or p(é), this is the problem!
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Maximum Likelihood Estimation

e The log-likelihood is monotonically related to the likelihood:

£(6:D)=10g p(D|6) = 3" log p(x"” |0)

e The Idea underlying maximum likelihood estimation (MLE): pick the
setting of parameters most likely to have generated the data we

saw: 6, =argmax, £(6;D)
e Problem of MLE:

e Overfitting: means that "some of the relationships that appear statistically significant are
actually just noise. It occurs when the complexity of the statistical model is too great for the
amount of data that you have"

e Often the MLE overfits the training data, so it is common to maximize a regularized log-

likelihood instead: ~
6 =argmax, £(6;D)—c(9)

e Insufficient training data can lead to spurious estimator (e.g., certain possible values are not
observed due to data sparsity), so it is common to smooth the estimated parameter
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Being a pragmatic frequentist

e Maximum a posteriori (MAP) estimation:

Ounp =argmax, p(@| D) =argmax, £(¢; D) +log p(0)

e Smoothing with pseudo-counts
e Recall that for Binomial Distribution, we have

head
) head n
7

MLE ~ _head |, tail
n +Nn

e What if we tossed too few times so that we saw zero head?

We have éﬂf”d =0, and we will predict that the probability of seeing a
head next is zero!!!

head

e The rescue: Qhead _ n__+n

MLE — _head |, ~til |, 1 . . .
n"* +n® +n But are we still objective?

Where #'is know as the pseudo- (imaginary) count
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Bayesian estimation for Bernoulli | :°

e Beta distribution:

. _F(a+/3) w101 _ p\B-1 _ a-171 _ gy p-1
P(H,a,ﬂ)—ir(a)r(ﬁ)ﬁ 1-0)"" =B(a, )0 (1-6)

e When xis discrete T'(X+1)=xI'(x) = x!

e Posterior distribution of 4:

PO, X [0) p(6)
- p(x(l),...,x(N))

PO x®,...xN) 0" (1-0)" x 0 (1-9)’* =gt 1-9)

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

e ¢ and pare hyperparameters (parameters of the prior) and correspond
to the number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for
Bernoulli, con'd

e Posterior distribution of 4:

p(gl X(l) X(N)) _ p(x(l) ----- X(N) |0) p(0)

p(X(l) X(N)) e th (l_e)n, XHu—l(l_H)ﬂfl — th+a—1(l_0)n,+/f—1

e Maximum a posteriori (MAP) estimation:

Ouap =argmaxlog P(0| x® . xM)

Bata parameters
can be understood

e Posterior mean estimation: as pseudo-counts

n,a

Ouays = [ (0] DYAO = C[ 0% 0™ (1—0)" 1d6:m
e Prior strength: A=a+p

e A can be interoperated as the size of an imaginary data set from which
we obtain the pseudo-counts

Effect of Prior Strength s

e Suppose we have a uniform prior (a=p=1/2),
and we observe /1 = (1, =2,n, =8)
e Weak prior A = 2. Posterior prediction:

o, 1+2
p(x=h|n, =2,n, :8,a:a><2):2+10 =0.25

e Strong prior A = 20. Posterior prediction:

10+2

-0.4
20+10 040

p(x=h|n,=2,n, =8,a =a%20) =

e However, if we have enough data, it washes away the prior.
e.g., 1 =(n, =200,n, =800). Then the estimates under
weak and strong prior are 52 and 432%-| respectively,

both of which are close to 0.2
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Being a “subjective” Bayesian

\
e The prior p(.) encodes our prior knowledge about the domain

e therefore Bayesian estimation has been criticized for being "subjective"

e Empirical Bayes — fit prior from "training" data
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How estimators should be used? |:°

. AMAP is not Bayesian (even though it uses a prior) since it is a
point estimate.

e Consider predicting the future. A sensible way is to combine
predictions based on all possible values of 8, weighted by
their posterior probability, this is what a Bayesian will do:

]
P (X 1) = [ P(Xye,,, 0 )0 O
= [ PO 10, P(O D)0

= [ P(Xe 1 0) P(OD)dO ® O

X Kuen
e A frequentist will typically use a “plug-in” estimator such as
ML/MAP:

p(xnew | X) = p(xnew | éML)Y OI’, p(xnew | X) = p(xnew | éMAP)

The Bayesian estimate will collapse to MAP for concentrated posterior
© Eric Xing @ CMU, 2005-2009 24
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Frequentist vs. Beyesian

e This is a “theological” war.
e Advantages of Bayesian approach:
e Mathematically elegant.

e Works well when amount of data is much less than number of
parameters (e.g., one-shot learning).

e Easy to do incremental (sequential) learning.

e Can be used for model selection (max likelihood will always pick the
most complex model).

e Advantages of frequentist approach:
e Mathematically/ computationally simpler.

e "objective", unbiased, invariant to reparameterization

e As|D|— «, the two approaches become the same:
P(O1D) > 5(0,6,.)

© Eric Xing @ CMU, 2005-2009 25
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Simplest GMs: the building HH
blocks 2
Density estimation o no
Parametric and nonparametric methods X
X
Regression
9 X Y
Linear, conditional mixture, nonparametric @, @)
L Q Q
Classification
Generative and discriminative approach X X
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Plates

e A plate is a “macro” that allows subgraphs to be replicated

0 X,
N
e Foriid (exchangeable) data, the likelihood is O Xn

p010)=]]p(x,10)

n
e We can represent this as a Bayes net with MVnodes.

The rules of plates are simple: repeat every structure in a box a number
of times given by the integer in the corner of the box (e.g. N), updating

the plate index variable (e.g. n) as you go.

Duplicate every arrow going into the plate and every arrow leaving the
plate by connecting the arrows to each copy of the structure.

© Eric Xing @ CMU, 2005-2009

27

Discrete Distributions

e Bernoulli distribution: Ber(p)

1-p forx=0
P(X)_{p forx =1

e Multinomial distribution: Mult(1, 6)
e Multinomial (indicator) variable:

X;=[01], and XX, =
JL-6]

where
X,=lwp.0;, X0,=1.

JEL 8]

XK XX XX

px())) = P({XJ =1,where j index the dice - face})
=0,=0, %0, x0, x0," =10, =0~
k
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Discrete Distributions

e Multinomial distribution: Mult(#,6)

e Count variable:

n
n=| |, Wherean:N
Ny !
N! N!
p(n):ﬁ@nwznz O :ﬁgn
n!n,!---n,! n!n,!---n,!
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Example: multinomial model o
e Data: GM:
e We observed Niid die rolls (Ksided): O={5, 1, K, ..., 3} | G G G --- &
e Representation: (x,, 1
Unit basis vectors: x, = X';’Z , wherex,, ={0,13, andZK:xn‘k =1
* )
e Model: Xpe=1 wp. 6, and > 6 =1
ke{l,..K}

e How to write the likelihood of a single observation x,?
P(x) = P({x,, =1 wherek index the die -side of the nth roll})

=0, =6 %6, x---x " = ﬁek*“
k=1
The likelihood of datasetD={x,, ..., x\}:
N N N ZN:XM
P(Xl’XZ""’XN |€) :HP(XH |¢9) :H(Hgk n‘k] :HQKH
k

" o EricXing @ By 20b5-2000

:HQKHK
k
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MLE: constrained optimization

with Lagrange multipliers

e Objective function:

£(0;0)=logP(D|6) = IogHH”k _an logd,
¢ We need to maximize this subject to the constrain 2‘9/« =1

e Constrained cost function with a Lagrange multiplier

K
¢ =Y nlogd, +/1(1—29kJ
k k=1

e Take derivatives wrt 9,

o n,
9L e _j-0 _
00, 6, —> 0 M

ne=20,=>n=N=1>0,=2
k k

e Sufficient statistics

e The counts,m=(n,,---,N), N, = zn X, are sufficient statistics of data O

© Eric Xing @ CMU, 2005-2009
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Frequency as
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Bayesian estimation:

e Dirichlet distribution:

r(zak)
P(O) = Hr(ak)HQkk :C(Of)l:[ek“

e Posterior distribution of 4: ﬁ
Xyyoes Xy | @) PO e - o
PO X,,ons XMzw Hg Hgk 1:1_19k 1
p(xl llll k
e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

e Posterior mean estimation:
_ _ a+n -1 _ nk +ak

0, =[6,p(0] D)dH—CIHkHQk do=" Tl

© Eric Xing @ CMU, 2005-2009
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Dirichlet parameters
can be understood
as pseudo-counts
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More on Dirichlet Prior:

e Where is the normalize constant {{a) come from?

1 1 1 H r(ak)
= | |ent..9xdE .. dg, = 23K
=) s a0 =L

e |Integration by parts
e ['(a)is the gamma function: I'(a) = J':t”’le’tdt
e Forinregers, F(n+1):n!
e Marginal likelihood:
PHX - XN}I&):p(ﬁlﬁ):jp(ﬁlé)p(él&)déz
e Posterior in closed-form:
P(0 |0, 3 @) = X0 LOR(O1 D)
p(n|a)
e Posterior predictive rate:

c(@)
C(i+ad)

=C(n+a)[ ] =Dir(n+a)
k

s N\ = = ak*”k’lx N 9 _ C(ﬁ+&) _ r]i+ai

PO =100 X @) = O+ ] 4 0= crra “inlela]
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Sequential Bayesian updating :

e Start with Dirichlet prior P( | &) = Dir(d : &)

e Observe N'samples with sufficient statistics #7'. Posterior
becomes:

P@|a,A')=Dir(@:a+A")

e Observe another N" samples with sufficient statistics 7™ .
Posterior becomes:

P@|a,A' /") =Dir(@:a+a+A")

e So sequentially absorbing data in any order is equivalent to
batch update.
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Effect of Prior Strength

\
o Let Non|= ank be the number of observed samples

o Let A== Zk“k be the number of "pseudo observations"
---- the strength of the prior
e Let a'|a|/A denote the prior means

e Then posterior mean is a convex combination of the prior
mean and the MLE:
n+a, N+a;
|Al+la| N+A
_ A &, N n
N+AA N+AN
=1, +(1-1)0, e

A
N+A
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Hierarchical Bayesian Models o

e 0 are the parameters for the likelihood p(x] 6)

e « are the parameters for the prior p(0| @) .

e We can have hyper-hyper-parameters, etc.

e We stop when the choice of hyper-parameters makes no
difference to the marginal likelihood; typically make hyper-
parameters constants. m

e Where do we get the prior? *)

e Intelligent guesses
e Empirical Bayes (Type-ll maximum likelihood) o )
- computing point estimates of « :
A, =argmax = p(7 | a)
© Eric Xing @ CMU, 2005-2009 36
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Limitation of Dirichlet Prior: :
\
>
©
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The Logistic Normal Prior :
b2
R OIRG
0~ LN (%)
O
7~ Ny y(u,2) 7 =0 ‘O\Q}(\ o
) :exp{;fi —Iog[l+§e" j} Q\o N
K1 - Log Partition Function
Clr)= '09(“;37') - Normalization Constant
e Pro: co-variance structure
e Con: non-conjugate (we will discuss how to solve this later)
© Eric Xing @ CMU, 2005-2009 38
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Logistic Normal Densities o

\—og‘\s“\c 0.08

Norma‘ 0.06
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Example: univariate-Gaussian o

e Data: GM:
e We observed Niid real samples: ®@® - ®
0={-0.1,10,1,-5.2, ..., 3} 1

o Model:  P(x)=(270?) " exp{- (x— u)? 1202}

e Log likelihood:

£(6:0) =log P(D|9)=—glog(27zaz)—;i(xn_“)

2
n=1

e MLE: take derivative and set to zero:

®)

ol 1
a:(llaz)zn(xn_ﬂ) Huie :ﬁzn(xn)

ot N 1 2 1 2
o2 20° +§Zn(xn - uf T _NZ”(X" ~fn)

© Eric Xing @ CMU, 2005-2009
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MLE for a multivariate-Gaussian

e It can be shown that the MLE for y and ¥ is X,
1 Xn — XHZ
Hue = Nzn (Xn) XH“K
1 T 1 [ B
Zyie :Nzn(xnfﬂml_)(xnflurvn_) :NS !
x|
where the scatter matrix is ;

S= Zn (Xn ’/“ML)(Xn 7/“ML)T = (Zn anln), NﬂML/IAT/lL

e The sufficient statistics are X x, and Z x x, .

e Note that XTX=% x x,T may not be full rank (eg. if N <D), in which case
2,y is not invertible

© Eric Xing @ CMU, 2005-2009 41
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Bayesian parameter estimation secs
for a Gaussian o

e There are various reasons to pursue a Bayesian approach
e We would like to update our estimates sequentially over time.

e We may have prior knowledge about the expected magnitude of the
parameters.

e The MLE for Z may not be full rank if we don’t have enough data.
e We will restrict our attention to conjugate priors.

e We will consider various cases, in order of increasing
complexity:
e Known g, unknown u
e Known y, unknown o
e Unknown yand o

© Eric Xing @ CMU, 2005-2009 42
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Bayesian estimation: unknown p, known o

e Normal Prior: GM:

P(u) =272 )" expl(u—po)? 127°

|

),

()

e Joint probability: @

12 N
P(x,u) = (27[02 )7N exp{— 2(1)_2 Z(X,, —,u)z} @
LM

X (27[72 )7“2 exp{— (1= 145)? /212}

e Posterior:
P(u| x) = (2752 )" expl- (u— i2)? 1257}
where = Nio® X + ks and &° =[N+1j1
H Nlc?+1/72 v\gl’“az-rl/rz Hoo o? 7P
© Eric nﬁ@ﬂﬂﬂ'%m—%ﬁé‘ 43

Bayesian estimation: unknown p, known o

Uy 2 2
o° o;

_ Nlo® _ 1o} , 52 ﬁ+i °
N/c®+1/at N/02+1/0§'[O'

e The posterior mean is a convex combination of the prior and the MLE, with
weights proportional to the relative noise levels.

e The precision of the posterior 1/02,, is the precision of the prior 1/02, plus one
contribution of data precision 1/02 for each observed data point.

e Sequentially updating the mean 5
e pu*=0.8 (unknown), (0?)*=0.1 (known)

e Effect of single data point
2 2
O O
Hy = o +(X— o) — © 7 =X—(X= 1) — . 2
o +o, o+

e Uninformative (vague/ flat) prior, g2, —

Hy = Ho 0
-1 0 |
© Eric Xing @ CMU, 2005-2009 44
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Other scenarios

e Known p, unknown A = 1/0,
e The conjugate prior for A is a Gamma with shape a, and rate (inverse scale) b,

1
HE A" ]l‘_\|r| bA)
1)

il AMa, b)) = =
(¢

e The conjugate prior for g2 is Inverse-Gamma
|

I(,'(rrf|u.h:- =T Ih"infl_l”“'vxpl h_.-"if‘rfilﬁl
i)
e Unknown p and unknown o,
e The conjugate prioris 5 = 2
Plp.o”) = Plulo=)P(a”)

Normal-Inverse-Gamma

.'\’[;:}nr.nfl'} 1G> a.b)

e Semi conjugate prior

e Multivariate case:
e The conjugate prior is P(p,X) = f"ﬂl-\-'fp'il-\-i'
Normal-Inverse-Wishart = Nplpo. %) IW(Z|AG " w)
i
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Summary o
e Learning scenarios:
e Data
e Objective function
e Frequetist and Bayesian
e Learning single-node GM — density estimation
e Typical discrete distribution
e Typical continuous distribution
e Conjugate priors
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