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Learning Graphical Models

The goal:

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)
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Learning Graphical Models
Scenarios:

completely observed GMs
directed
undirected 

partially or unobserved GMs
directed
undirected (an open research topic) 

Estimation principles:
Maximal likelihood estimation (MLE)
Bayesian estimation
Maximal conditional likelihood
Maximal "Margin" 
Maximum entropy

We use learning as a name for the process of estimating the parameters, 
and in some cases, the topology of the network, from data.
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Score-based approach
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ML Parameter Est. for 
completely observed GMs of 

given structure

Z

X

The data:
{(z(1),x(1)), (z(2),x(2)), (z(3),x(3)), ... (z(N),x(N))}
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Parameter Learning
Assume G is known and fixed,

from expert design
from an intermediate outcome of iterative structure learning

Goal: estimate  from a dataset of N independent, identically 
distributed (iid) training cases D = {x(1), . . . , x(N)}.
In general, each training case                                  is a 
vector of M values, one per node,

the model can be completely observable, i.e., every element in xn is 
known (no missing values, no hidden variables),
or, partially observable, i.e., ∃i, s.t. is not observed.  

In this lecture we consider learning parameters for a 
single node.
-- Often known as “density estimation”
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Density Estimation
A Density Estimator learns a mapping from a set of attributes 
to a Probability

Often know as parameter estimation if the distribution form is 
specified

Binomial, Gaussian …

Four important issues:

Nature of the data (iid, correlated, …)
Objective function (MLE, MAP, Margin …)
Algorithm (simple algebra, gradient methods, EM, …)
Evaluation scheme (likelihood on test data, predictability, consistency, …)
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Bernoulli distribution: Ber(p)

Multinomial distribution: Mult(1,θ)

Multinomial (indicator) variable:
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Uniform Probability Density Function

Normal (Gaussian) Probability Density Function

The distribution is symmetric, and is often illustrated as a bell-shaped curve. 
Two parameters, µ (mean) and σ (standard deviation), determine the location and shape of 
the distribution.
The highest point on the normal curve is at the mean, which is also the median and mode.
The mean can be any numerical value: negative, zero, or positive.

Multivariate Gaussian

Continuous Distributions
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Density Estimation Schemes
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Parameter Learning from iid Data
Goal: estimate distribution parameters θ from a dataset of N
independent, identically distributed (iid), fully observed, training 
cases

Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumption, write L(θ) as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:
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Example: Bernoulli model
Data: 

We observed N iid coin tossing: D={1, 0, 1, …, 0}

Representation:

Binary r.v:

Model: 

How to write the likelihood of a single observation x(i)? 

The likelihood of datasetD={x1, …,xN}:

)()( 1)( )1()(
ii xxixP −−= θθ

( )∏∏
=

−

=

−==
N

i

xx
N

i

iN ii

xPxxxP
1

1

1

)()()2()1( )()(

)1()|()|,...,,( θθθθ

}1,0{)( ∈nx

tails#head#
1

)1()1( 1

)(

1

)(

θθθθ −=
∑

−
∑

= ==

−
N

i

i
N

i

i xx

⎩
⎨
⎧

=
=−

=
1
01

x
x

xP
for         
for    

)(
θ

θ
xxxP −−= 11 )()( θθ⇒



7

© Eric Xing @ CMU, 2005-2009 13

Maximum Likelihood Estimation
Objective function: 

We need to maximize this w.r.t. θ

Take derivatives wrt θ

Sufficient statistics
The counts,                                          are sufficient statistics of data D
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Overfitting
Recall that for Bernoulli Distribution, we have

What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

Frequentist vs. Bayesian estimate
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Bayesian Parameter Estimation
Treat the distribution parameters θ also as a random variable
The a posteriori distribution of θ after seem the data is:

This is Bayes Rule

likelihood marginal
priorlikelihoodposterior ×
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The prior p(.) encodes our prior knowledge about the domain
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Frequentist Parameter Estimation 
Two people with different priors p(θ) will end up with 
different estimates p(θ|D).

Frequentists dislike this “subjectivity”.
Frequentists think of the parameter as a fixed, unknown 
constant, not a random variable.
Hence they have to come up with different "objective" 
estimators (ways of computing from data), instead of using 
Bayes’ rule.

These estimators have different properties, such as being “unbiased”, 
“minimum variance”, etc.
The maximum likelihood estimator, is one such estimator, which is 
simple and has good statistical properties.
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Discussion

θ or p(θ), this is the problem!

Bayesians know it
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Maximum Likelihood Estimation
The log-likelihood is monotonically related to the likelihood:

The Idea underlying maximum likelihood estimation (MLE): pick the 
setting of parameters most likely to have generated the data we 
saw:

Problem of MLE: 
Overfitting: means that "some of the relationships that appear statistically significant are 
actually just noise. It occurs when the complexity of the statistical model is too great for the 
amount of data that you have"

Often the MLE overfits the training data, so it is common to maximize a regularized log-
likelihood instead:

Insufficient training data can lead to spurious estimator (e.g., certain possible values are not 
observed due to data sparsity), so it is common to smooth the estimated parameter 
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Being a pragmatic frequentist
Maximum a posteriori (MAP) estimation:

Smoothing with pseudo-counts
Recall that for Binomial Distribution, we have

What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of seeing a 
head next is zero!!! 

The rescue: 

Where n' is know as the pseudo- (imaginary) count
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But are we still objective?
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Bayesian estimation for Bernoulli 
Beta distribution:  

When x is discrete

Posterior distribution of θ : 

Notice the isomorphism of the posterior to the prior, 
such a prior is called a conjugate prior
α and β are hyperparameters (parameters of the prior) and correspond 
to the number of “virtual” heads/tails (pseudo counts)
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Bayesian estimation for 
Bernoulli, con'd

Posterior distribution of θ :

Maximum a posteriori (MAP) estimation: 

Posterior mean estimation:

Prior strength: A=α+β
A can be interoperated as the size of an imaginary data set from which 
we obtain the pseudo-counts
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Effect of Prior Strength
Suppose we have a uniform prior (α=β=1/2), 
and we observe
Weak prior A = 2. Posterior prediction:

Strong prior A = 20. Posterior prediction:

However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2
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Being a “subjective” Bayesian
The prior p(.) encodes our prior knowledge about the domain

therefore Bayesian estimation has been criticized for being "subjective" 

Empirical Bayes – fit prior from "training" data
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How estimators should be used?
is not Bayesian (even though it uses a prior) since it is a 

point estimate.
Consider predicting the future. A sensible way is to combine 
predictions based on all possible values of θ, weighted by 
their posterior probability, this is what a Bayesian will do:

A frequentist will typically use a “plug-in” estimator such as 
ML/MAP:

The Bayesian estimate will collapse to MAP for concentrated posterior 
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Frequentist vs. Beyesian
This is a “theological” war.
Advantages of Bayesian approach:

Mathematically elegant.
Works well when amount of data is much less than number of 
parameters (e.g., one-shot learning).
Easy to do incremental (sequential) learning.
Can be used for model selection (max likelihood will always pick the 
most complex model).

Advantages of frequentist approach:
Mathematically/ computationally simpler.
"objective", unbiased, invariant to reparameterization

As                the two approaches become the same:,|| ∞→D
),()|( MLDp θθδθ

)
→
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Classification
Generative and discriminative approach

Q

X

Q

X

Regression
Linear, conditional mixture, nonparametric

X Y

Density estimation
Parametric and nonparametric  methods

µ,σ

XX

Simplest GMs: the building 
blocks
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A plate is a “macro” that allows subgraphs to be replicated

For iid (exchangeable) data, the likelihood is

We can represent this as a Bayes net with N nodes.
The rules of plates are simple: repeat every structure in a box a number 
of times given by the integer in the corner of the box (e.g. N), updating 
the plate index variable (e.g. n) as you go.
Duplicate every arrow going into the plate and every arrow leaving the 
plate by connecting the arrows to each copy of the structure.
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Bernoulli distribution: Ber(p)

Multinomial distribution: Mult(1,θ)

Multinomial (indicator) variable:

 .      ,    w.p.
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Multinomial distribution: Mult(n,θ)

Count variable:

Discrete Distributions
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Example: multinomial model
Data: 

We observed N iid die rolls (K-sided): D={5, 1, K, …, 3}

Representation:

Unit basis vectors:

Model: 

How to write the likelihood of a single observation xn? 

The likelihood of datasetD={x1, …,xN}:
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MLE: constrained optimization 
with Lagrange multipliers

Objective function: 

We need to maximize this subject to the constrain

Constrained cost function with a Lagrange multiplier

Take derivatives wrt θk

Sufficient statistics
The counts,                                                are sufficient statistics of data D
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Bayesian estimation: 
Dirichlet distribution:  

Posterior distribution of θ : 

Notice the isomorphism of the posterior to the prior, 
such a prior is called a conjugate prior

Posterior mean estimation:
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More on Dirichlet Prior:
Where is the normalize constant C(α) come from?

Integration by parts 
Γ(α) is the gamma function:
For inregers,  

Marginal likelihood:

Posterior in closed-form:

Posterior predictive rate:
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Sequential Bayesian updating
Start with Dirichlet prior
Observe N ' samples with sufficient statistics    . Posterior 
becomes:

Observe another N " samples with sufficient statistics     . 
Posterior becomes:

So sequentially absorbing data in any order is equivalent to 
batch update.
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Effect of Prior Strength
Let                          be the number of observed samples
Let                          be the number of "pseudo observations"
---- the strength of the prior 
Let                   denote the prior means
Then posterior mean is a convex combination of the prior 
mean and the MLE:
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Hierarchical Bayesian Models
θ are the parameters for the likelihood p(x|θ)
α are the parameters for the prior p(θ|α) .
We can have hyper-hyper-parameters, etc.
We stop when the choice of hyper-parameters makes no 
difference to the marginal likelihood; typically make hyper-
parameters constants.
Where do we get the prior? 

Intelligent guesses
Empirical Bayes (Type-II maximum likelihood) 

computing point estimates of α :

)|(maxarg αα
α

vv)v
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Limitation of Dirichlet Prior:

α

N

θ

xi
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- Log Partition Function
- Normalization Constant
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The Logistic Normal Prior

Pro: co-variance structure
Con: non-conjugate (we will discuss how to solve this later)
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Logistic Normal Densities

Logistic 

Normal
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Example: univariate-Gaussian
Data: 

We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

Model: 

Log likelihood:

MLE: take derivative and set to zero:

( ) { }22212 22 σµπσ /)(exp)( /
−−=

− xxP

x1 x2 x3 xN
…

xi
N

GM:

( )∑
=

−
−−==

N

n

nxNDPD
1

2

2
2

2
12

2 σ
µπσθθ )log()|(log);(l

( )

( )∑

∑

−+−=
∂
∂

−=
∂
∂

n n

n n

xN

x

2
422

2

2
1

2

1

µ
σσσ

µσ
µ
l

l )/( ( )

( )∑

∑

−=

=

n MLnMLE

n nMLE

x
N

x
N

22 1

1

µσ

µ



21

© Eric Xing @ CMU, 2005-2009 41

MLE for a multivariate-Gaussian
It can be shown that the MLE for µ and Σ is

where the scatter matrix is

The sufficient statistics are Σnxn and Σnxnxn
T.

Note that XTX=Σnxnxn
T may not be full rank (eg. if N <D), in which case 

ΣML is not invertible
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Bayesian parameter estimation 
for a Gaussian

There are various reasons to pursue a Bayesian approach
We would like to update our estimates sequentially over time.
We may have prior knowledge about the expected magnitude of the 
parameters.
The MLE for Σ may not be full rank if we don’t have enough data.

We will restrict our attention to conjugate priors.

We will consider various cases, in order of increasing 
complexity:

Known σ, unknown µ
Known µ, unknown σ
Unknown µ and σ
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Bayesian estimation: unknown µ, known σ

Normal Prior:  

Joint probability: 

Posterior:
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Bayesian estimation: unknown µ, known σ

The posterior mean is a convex combination of the prior and the MLE, with 
weights proportional to the relative noise levels.
The precision of the posterior 1/σ2

N is the precision of the prior 1/σ2
0 plus one 

contribution of data precision 1/σ2 for each observed data point.

Sequentially updating the mean
µ∗ = 0.8 (unknown),  (σ2)∗ = 0.1 (known)

Effect of single data point

Uninformative (vague/ flat) prior, σ2
0 →∞
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Other scenarios
Known µ, unknown λ = 1/σ2

The conjugate prior for λ is a Gamma with shape a0 and rate (inverse scale) b0

The conjugate prior for σ2 is Inverse-Gamma

Unknown µ and unknown σ2
The conjugate prior is 

Normal-Inverse-Gamma

Semi conjugate prior

Multivariate case:
The conjugate prior is 

Normal-Inverse-Wishart
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Summary
Learning scenarios:

Data
Objective function
Frequetist and Bayesian

Learning single-node GM – density estimation
Typical discrete distribution
Typical continuous distribution
Conjugate priors


