
10708 Graphical Models: Homework 3
Due Monday, April 1, beginning of class

March 18, 2013

Instructions: There are five questions on this assignment. There is a problem involves
coding. You can program in whatever language you like, although we suggest MATLAB. Do
not attach your code to the writeup. Instead, put your code in a directory called “andrewid-
HW3” and tar it into a tgz named “andrewid-HW3”. For example, epxing-HW3.tgz. Email
your tgz file ONLY to gunhee@cs.cmu.edu, seunghak@cs.cmu.edu and kpuniyan@cs.cmu.edu.
Refer to the web page for the policies regarding collaboration, due dates, extensions, and
late days.

1 Conditional Random Fields [15 points]

[Exercise 5.16, Daphne Koller and Nir Friedman]

In the class, we have learned that the linear-chain CRF is the sequential version of logistic
regression. In this problem, we will show that the naive Markov model of CRF corresponds to
the logistic regression. Consider a CRF model over the l-valued variables X = {X1, . . . , Xk}
and m-valued Y = {Y }, with the pairwise potentials defined via the following log-linear
models

φi(x
l
i, y

m) = exp{wml
i I(Xi = xli, Y = ym)}.

Again, we have a single-node potential φ0 = exp{wm
0 I(Y = ym)}. Here I(·) is an indicator

function. Show that the CPD P (Y |X1, . . . , Xk) defined by this model is symbolically identical
to that of multinomial logistic model. (i.e., they belong to the same general class of models,
so find out what is that general class, and what is the mathematical form of it). (Hint : You
can start from the definition of CRF shown in Eq.(4.11) of Koller &Friedman).
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2 Belief Propagation and Bethe Free Energy [15 points]

In the class, we have learned that BP fixed points correspond to the minimum stationary
points of the Bethe approximation of the free energy for a factor graph, and the BP algorithm
can attain only an approximation (not exact) to the true distribution P (x1, . . . , xN) when the
factor graph has cycles. In this problem, we will see a simple example where a distribution
that minimizes the Bethe free energy is not even a valid distribution.

Consider a simple factor graph with three binary variable nodes (x1, x2, x3), where each pair
of nodes is connected by a factor node. Suppose that one-node and two-node beliefs are
given as follows.

b1(x1) = b1(x2) = b3(x3) = (0.5 0.5)

b12(x1, x2) =

(
0.4 0.1
0.1 0.4

)
, b23(x2, x3) =

(
0.4 0.1
0.1 0.4

)
, b13(x1, x3) =

(
0.1 0.4
0.4 0.1

)
.

1. (7 pts) Show that the above belief set satisfies the normalization condition and marginal-
ization conditions.

2. (8 pts) Show that there can be no distribution P (x1, x2, x3) that has the above belief
set as its marginals. (H int: Compute P (x1 = 0, x2 = 0, x3 = 0), . . . , P (x1 = 1, x2 =
1, x3 = 1) and show that they cannot constitute a valid distribution).

3 The Marginal Polytope [15 points]

Example 3.8 in Wainwright and Jordan illustrates the marginal polytope of an Ising model
with two variables. Now let us consider an Ising Model with three variables X1, X2, and X3

(that take on values in {0, 1}) with edges {X1, X2} and {X2, X3}.
1. (7 pts) List the points that are the corners of the marginal polytope.

2. (8 pts) List 8 constraints that are part of the half space representation of the marginal
polytope.

4 Variational Inference in Latent Dirichlet Allocation

(LDA) [30 marks]

The LDA graphical model (Figure 1) was discussed in class. The most popular use for LDA
is in modeling a document collection by topics, however, LDA-like models can also be used
for various other modeling tasks. In this question, we will apply LDA to the problem of
discovering human ancestry.
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Figure 1: The LDA graphical model

In applications of population genetics, it is often useful to classify individuals in a sam-
ple into populations. An underlying assumption is that there are K ancestor populations,
and each individual is an admixture of the ancestor populations. For example, in studies
of human evolution, the population is often considered to be the unit of interest, and a
great deal of work has focused on learning about the evolutionary relationships of modern
populations.

For each individual, we measure some genetic data about them, called genotype data. Each
genotype is a locus that can take a discrete count value, individuals with similar genotypes
are expected to belong to the same ancestor populations. We can derive the admixture
coefficients (θ) for each individual by running an LDA model, where the documents are the
individuals, and the words are the genotype.

In this question, we will implement variational inference to infer the population mixture
(θ) and the genotype ancestry (topic) assignments (z) for any individual. The variational
distribution used to approximate the posterior (for a given individual i) is q(θ, z|γ, φ) =
q(θ|γ)

∏Ni

n=1 q(zn|φn), where the Dirichlet parameter γ and the multinomial parameters (φ1, · · · , φNi
)

are the free variational parameters (Ni is the number of non-zero genotype loci for this in-
dividual). See Figure 2 for a graphical representation.

The data matrix in data.mat provides data about M = 100 individuals, each represented
by a vocabulary of N = 200 genotype loci. This data has been preprocessed into a count
matrix D of size M ×N . Dij = 1 represents the value of genotype j in individual i.

We learnt the LDA topic model over K = 4 ancestor populations, and the inferred β matrix
of size N ×K has been stored in beta matrix in data.mat. The value of α is 0.1.

In the writeup, report the following:

1. Report the variational inference update equations for estimating γ and φ (you don’t
have to derive them).

2. For individual 1, run LDA inference to find φ for each genotype locus, store it as a
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Figure 5: (Left) Graphical model representation of LDA. (Right) Graphical model representation
of the variational distribution used to approximate the posterior in LDA.

5.1 Inference

The key inferential problem that we need to solve in order to use LDA is that of computing the
posterior distribution of the hidden variables given a document:

p(θ,z |w,α,β) =
p(θ,z,w |α,β)
p(w |α,β)

.

Unfortunately, this distribution is intractable to compute in general. Indeed, to normalize the distri-
bution we marginalize over the hidden variables and write Eq. (3) in terms of the model parameters:

p(w |α,β) =
Γ(∑iαi)

∏iΓ(αi)

Z  k

∏
i=1

θαi�1i

! 
N

∏
n=1

k

∑
i=1

V

∏
j=1

(θiβi j)w
j
n

!
dθ,

a function which is intractable due to the coupling between θ and β in the summation over latent
topics (Dickey, 1983). Dickey shows that this function is an expectation under a particular extension
to the Dirichlet distribution which can be represented with special hypergeometric functions. It has
been used in a Bayesian context for censored discrete data to represent the posterior on θ which, in
that setting, is a random parameter (Dickey et al., 1987).

Although the posterior distribution is intractable for exact inference, a wide variety of approxi-
mate inference algorithms can be considered for LDA, including Laplace approximation, variational
approximation, and Markov chain Monte Carlo (Jordan, 1999). In this section we describe a simple
convexity-based variational algorithm for inference in LDA, and discuss some of the alternatives in
Section 8.

5.2 Variational inference

The basic idea of convexity-based variational inference is to make use of Jensen’s inequality to ob-
tain an adjustable lower bound on the log likelihood (Jordan et al., 1999). Essentially, one considers
a family of lower bounds, indexed by a set of variational parameters. The variational parameters
are chosen by an optimization procedure that attempts to find the tightest possible lower bound.

A simple way to obtain a tractable family of lower bounds is to consider simple modifications
of the original graphical model in which some of the edges and nodes are removed. Consider in
particular the LDA model shown in Figure 5 (left). The problematic coupling between θ and β
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Figure 2: Graphical model representation of the variational distribution used to approximate
the posterior in LDA.

matrix of size n1 × K (where n1 is the number of non-zero genotype loci present in
individual 1), and plot it as an image in your writeup (Use imagesc(φ); colorbar in
matlab). Don’t forget to show the colormap using the colorbar function to allow the
colors in the image to be mapped to numbers!

3. We will construct a matrix Θ of size M×K to represent the ancestor assignments for all
individuals in the population. For each individual i, run LDA inference to find γ, and
store it as row of Θ, i.e. Θi = γ. Visualize Θ as an image (Use imagesc(Θ); colorbar
in matlab; ) and print it in your write up.

4. Report the number of iterations needed to get to convergence for running inference on
all M individuals (check the convergence criteria in the “implementation hints” section
below).

5. Report the time taken to run inference on all M individuals.

6. Repeat the experiment for α = 0.01, α = 1, α = 10, and for each value of α, visualize
the Θ matrix summarizing the ancestor population assignments for all individuals.
Discuss the changes in the ancestor population assignments to the individuals as α
changes. Does the mean number of iterations required for convergence for inference
change as α changes?

Implementation hints:

1. If you use matlab, beta is a pre-defined function for the beta function, hence you might
want to not use beta as a variable name to avoid overloading.

2. In this assignment, regular updates will most likely work fine, since the vocabulary
size (number of genotype loci) is so small, but if you wanted a usable implementation
for other problems, updating probabilities would need to be done in log-space to avoid
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overflow and underflow issues.

3. Your convergence criteria should be that the absolute change in EACH value of γ AND
φ is less than ε (Use ε = 1e− 3).

5 Collapsed Gibbs Sampling for LDA [25 marks]

In this problem, we will derive collapsed Gibbs sampling equations for Latent Dirichlet
Allocation (LDA) with conditional probabilities:

φk ∼ Dirichlet(β) (1)

θi ∼ Dirichlet(α) (2)

zji|θi ∼ Discrete(θi) (3)

dji|zji,φzji ∼ Discrete(φzji) (4)

Here j is the index for words (di = {d1i, . . . , dNi}), i is the index for documents, and k is
the index for topics. Also, we use the following notation: Nwki = |{j : dji = w, zji = k}|
(total number of times the word w is assigned to the topic k), Nki =

∑
wNwki, and Nwk =∑

iNwki. We use superscript (−ji) (e.g. N
(−ji)
wki ) to indicate that the corresponding word dji

in document i is not counted in Nwki.

1. [2 pts] Write down P (d|z) and P (z) using their conditional probabilities. (Hint: Inte-
grate out φ and θ, respectively)

2. [1 pts] Exact probabilistic inference on p(z|d) is infeasible. Explain the reason why
the exact inference is infeasible.

3. [2 pts] Gibbs sampling is a particular instance of Metropolis-Hastings algorithm. Show
that Gibbs sampling can be viewed as a Metropolis-Hastings algorithm with acceptance
probability 1.

4. [10 pts] Since exact inference is infeasible, we will use approximate inference. In par-
ticular, in this problem, we are interested in collapsed Gibb’s sampling (It is called
“collapsed” Gibb’s sampling since φ and θ are integrated out in the inference proce-
dure). Prove the following LDA collapsed Gibb’s sampling equation:

p(zji = k|z\zji,d,α,β) ∝ (N
(−ji)
ki + αk)

N
(−ji)
wk + βw

N
(−ji)
k +

∑
w β

,

where w = dji.
(Hint: Γ(x+ 1) = x× Γ(x))

5. [5 pts] Note that θi (document-topic proportion) and φk (topic-word distribution) can
be represented by using only zji (topic assignment for each word dji in document i).
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Write down θik and φkj using only zji, α and β.

6. [5 pts] Write down pseudo-code for LDA collapsed Gibbs Sampling.

6


