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1 Overview

In this lecture, we introduced Factor Analysis and Space State Model.

Factor Analysis is a latent variable model with continuous random vector as the latent variable. For Factor
Analysis, we assume the measured data vector lies near a lower-dimensional manifold. We then model the
data in two-stages: First, generate a point in the manifold according to a probability density. Then observed
data is generated from another density based on the point we generated in the first step. In this sense, Factor
Analysis is very similar to a mixture model except its latent variable is continuous.

Space State Models (SSM) can be considered as a generalization to the traditional HMM model where the
latent variable has continuous values. Therefore SSM and HMM share the same inference problem: calculate
the conditional probability of latent variable given observed data. The inference problem can then be divided
into two type of problems: filtering(forward) inference and smoothing(backward) inference.

In this notes, we will first discuss Factor Analysis in section 2. Then in section 3, we will talk about SSM in
detail. Section 4 is an appendix which contains the mathematical background information for the notes.

2 Factor Analysis

2.1 Introduction

We can think of Factor Analysis as generating a point x on a linear subspace based on some Gaussian
distribution. Then we observe the data y which is conditionally generated from a Gaussian distribution
centered at point x with some noise.
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Factor analysis is more complex graphical model compared to mixture models. In mixture model, the latent
variables are discrete variables while observed variables can be either discrete or continuous. Mixture models
can be later built into HMMs while Factor Analysis leads to State Space Models.

2.2 Parameterization

In Factor Analysis model, variable X is a latent Gaussian variable with p dimensions and Y is the observed
variable with q dimensions. We assume p < q. And the model is parameterized as follows, let X be a
marginal Gaussian distribution with mean 0 and identity covariance matrix. Let the conditional distribution
Y be a Gaussian distribution with mean µ+ Λx and diagonal covariance matrix Ψ

X ∼ N (0, I)

Y |X ∼ N (µ+ Λx,Ψ)

Since Both X and Y are Gaussian distribution, we may conclude that their joint distribution and the
marginal distribution of Y is also Gaussian. Therefore we can calculate the marginal of Y and the conditional
distribution of X given Y by calculating their mean and variance.

In order to calculate the marginal distribution, we can express Y as a sum:

Y = µ+ Λx+W

where W is a distribution as N (0,Ψ) and it’s independent of X.

E(Y) = E(µ+ ΛX +W )

= µ+ ΛEX + EW

= µ

V ar(Y ) = E
[
(µ+ ΛX +W − µ)(µ+ ΛX +W − µ)T

]
= E

[
(ΛX +W ) (ΛX +W )

T
]

= ΛE
(
XXT

)
ΛT + E(WWT )

= ΛΛT + Ψ

Another way of calculating the mean and variance for marginal distribution is by law of total variance and



11 : Factor Analysis and State Space Models 3

law of total expectation

E (Y ) = E (µ+ ΛX)

= µ

V ar (Y ) = V ar (µ+ ΛX) + EΨ

= E
[
(ΛX) (ΛX)

T
]

+ Ψ

= ΛΛT + Ψ

In addition, we also need to calculate the covarince between X and Y

Cov(X,Y ) = E [X (µ+ ΛX +W − µ)]

= E
[
X (ΛX +W )

T
]

= ΛT

Finally we have the joint distribution for X,Y :

X,Y ∼ N (

[
0
µT

]
,

[
I ΛT

Λ ΛΛT + Ψ

]
)

We now have the conditional distribution of latent variable X given observed variable Y .

p(X|y) ∼ N (
(
I + ΛT Ψ−1Λ

)−1
ΛT Ψ−1 (y − µ) , I + ΛT Ψ−1Λ)−1)

2.3 Inference

We will calculate the conditional distribution of X|Y :

E(X|y) = ΛT
(
ΛΛT + Ψ

)−1
(y − µ)

Since this calculation requires inverting a q× q matrix, we can rewrite this equation to the following way so
we only need to inver a p× p dimensional matrix. This is preferred because p < q.

E(X|y) =
(
I + ΛT Ψ−1Λ

)−1
ΛT Ψ−1 (y − µ)

We then compute the variance of X. For similar reason we prefer the second form.

V ar(X|y) = I − ΛT
(
ΛΛT + Ψ

)−1
Λ

= (I + ΛT Ψ−1Λ)−1

Now we can solve the problem of finding maximum likelihood estimates of the parameters for our model by
looking at the likelihood of marginal probability. The log likelihood is a Gaussian log likelihood:

l (θ|D) = −N
2
log|ΛΛT + Ψ| − 1

2

{∑
n

(yn − µ)
T (

ΛΛT + Ψ
)−1

(yn − µ)

}
and we can obtain the usual maximum likelihood estimate which is sample mean:

µ̂ML =
1

N

∑
n

yn
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2.4 Learning with EM

In this section we will derive the EM algorithm for Factor Analysis. Suppose we have the complete data, then
the estimation of X reduce to a Gaussian density estimation and Y is a linear function of x with additive
white Gaussian noise W. Therefore In E step, we will ”fill in” X, then in M step, we will estimate Λ and Ψ
using linear regression.

E step

First we compute the complete likelihood, which is a product of Gaussian distribution. Then we take its
logarithm,

lc (θc|D) = −N
2
log|Ψ| − 1

2

∑
n

tr
(
xTnxn

)
− 1

2

∑
n

tr
[
(yn − Λxn)

T
Ψ−1 (yn − Λxn)

]
= −N

2
log|Ψ| − 1

2

∑
n

tr
(
xTnxn

)
− 1

2

∑
n

tr
[
(yn − Λxn)

T
(yn − Λxn) Ψ−1

]
= −N

2
log|Ψ| − N

2
tr
(
SΨ−1

)
where we define

S =
1

N

∑
n

(yn − Λxn) (yn − Λxn)
T

We now take the conditional expectation of the complete log likelihood.

Q
(
θ|θ(t)

)
= −N

2
log|Ψ| − N

2
tr
(
〈S〉Ψ−1

)

where,

〈S〉 =
1

N

∑
n

〈
yny

T
n − ynXT

n ΛT − ΛXny
T
n + ΛXnX

T
n ΛT

〉
=

1

N

∑
n

(
yny

T
n − yn

〈
XT

n

〉
ΛT − Λ 〈Xn〉 yTn + Λ

〈
XnX

T
n

〉
ΛT
)

From previous section we have already obtained these expectations.

〈Xn〉 = E (Xn|Yn)〈
XnX

T
n

〉
= V ar (Xn|Yn) + E (Xn|Yn)E (Xn|Yn)

T
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M step

In order to update Λ and Ψ, we compute the derivative of Q with respect to each variable:

Q
(

Λ|θ(t)
)

=
1

N

∑
n

tr
(
yny

T
n − yn

〈
XT

n

〉
ΛT − Λ 〈Xn〉 yTn + Λ

〈
XnX

T
n

〉
ΛT Ψ−1

)
∂Q

∂Λ
=
∑
n

Ψ−1yn
〈
XT

n

〉
−
∑
n

Ψ−1Λ
〈
XnX

T
n

〉
= 0

Λt+1 =

(∑
i

yi
〈
xTi
〉)(∑

i

〈
xix

T
i

〉)−1
Q
(
θ|θ(t)

)
= −N

2
log|Ψ| − N

2
tr
(
〈S〉Ψ−1

)
∂Q

∂Ψ
=
N

2
Ψ− N

2
〈S〉 = 0

Ψt+1 = 〈S〉

3 State Space Model (SSM)

3.1 Introduction

State space model can be considered as a sequential FA or a continuous state HMM. It’s structured identical
to HMM with real-valued nodes and linear-Gaussian probability model. In the notes we will develop the
inference method which is Kalman filter. To represent the transition between nodes, we can allow the mean
of the state at time t+ 1 to be a linear function of the state at time t. So,

xt+1 = AXt +Gwt

yt = CXt + vt

where wt and vt are Gaussian noise which is independent from the noise in previous states.

w ∼ N (0, Q)

v ∼ N (0, R)

Then we have xt+1 as a Gaussian distribution

xt+1|xt ∼ N (Axt, GQG
T )

In State Space Model, the mean of observed value is a linear function of the state. Therefore we have,

yt|xt ∼ N (Cxt, R)

Finally, the initial state x0 also follows a Gaussian distribution:

x0 ∼ N (0,Σ0)

3.2 Inference Problems

• Filtering: given y1, y2, ..., yt, estimate xt. This is same as calculating P (xt|y1:t)
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Kalman filter: perform exact online inference (sequential Bayesian updating) in an LDS. It is the
Gaussian analog of the forward algorithm for HMMs.

p(Xt = i|y1:t) = αi
t ∝ p(yt|Xt = i)

∑
j

P (Xt = i|Xt−1 = j)αj
t−1

• Smoothing: given y1, y2, ..., yt, estimate xt(t < T )

The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in an LDS. It is the
Gaussian analog of the forwards-backwards (alpha-gamma) algorithm:

p(Xt = i|y1:T ) = γit ∝
∑
j

αi
tP (Xj

t+1|X
j
i )γjt+1

3.3 Kalman Filtering Derivation

Assumption

Let t denote time. Assume we have a linear dynamic model for latent states and a observations are derived
from latent state linearly, e.g.

xt = Axt−1 +Gwt−1

yt = Cxt + vt

where xt ∈ Rn denote the latent state and yt ∈ Rm denote the observation at time t, A ∈ Rn×n, C ∈ Rm×m,
Gw ∼ N (0;Q), vt ∼ N (0;R), and x0 ∼ N (0; Σ0).

Two Steps

Kalman filtering is a recursive procedure to update the latent state xt. In each iteration, there are two steps:

Predict Step Compute predicted latent state distribution p (xt+1|y1:t) from prior belief p (xt|y1:t) and
dynamic model p (xt+1|xt). This step is also called time update.

Update Step Compute new belief of the latent state distribution p
(
xt+1|y1:t+1

)
from prediction p (xt+1|y1:t)

and observation yt+1 by using the observation model p
(
yt+1|xt+1

)
. The step is also called measure-

ment update since it’s using the measured information yt+1.

Since all distributions are normal, their linear combinations are also normal. Hence we just need the expec-
tation and variance to describe each distribution.
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Derivation

The goal is to compute p(xt+1|y1:t+1). We will do so by first compute the prediction p (xt+1|y1:t) by using
the dynamic model. Then, we use the observation model to find the joint distribution p

(
xt+1,yt+1|y1:t

)
,

note the joint distribution is also multivariate Gaussian. Finally compute p (xt+1|yt+1,y1:t) with formula of
conditional Gaussian distributions. The final term is just our goal.

First we need to compute p (xt+1|y1:t). Since

p (xt+1|y1:t) = p (xt+1|xt) p (xt|y1:t) = p (Axt +Gwt+1|y1:t) ,

we have

x̂t+1|t = E (xt+1|y1:t) = E (Axt +Gwt+1|y1:t) = AE (xt|y1:t) + E (Gwt+1|y1:t) = Ax̂t|t + 0 = Ax̂t|t

and

Pt+1|t = E
((

xt+1 − x̂t+1|t
) (

xt+1 − x̂t+1|t
)T |y1:t

)
= E

((
Axt +Gwt − x̂t+1|t

) (
Axt +Gwt − x̂t+1|t

)T |y1:t

)
= E

((
Axt +Gwt −Ax̂t|t

) (
Axt +Gwt −Ax̂t|t

)T |y1:t

)
= E

((
Axt −Ax̂t|t

) (
Axt −Ax̂t|t

)T
+Gwt

(
Axt −Ax̂t|t

)T
+
(
Axt −Ax̂t|t

)
GwT

t +GwtGw
T
t |y1:t

)
= AE

((
xt − x̂t|t

) (
xt − x̂t|t

)T |y1:t

)
AT +GwtE

(
xt − x̂t|t

)T
AT +AE

(
xt − x̂t|t|y1:t

)
wT

t G
T +Gwtw

T
t G

T

= APt|tA
T + 0 + 0 +GQGT

= APt|tA
T +GQGT .

where x̂t+1|t and Pt+1|t denote the expectation and variance of p (xt+1|y1:t) and x̂t|t and Pt|t denote the
expectation and variance of p (xt|y1:t), respectively.

Next, we will find the joint distribution p
(
xt+1,yt+1|y1:t

)
, or equivalently the expectation mt+1|t and

variance Vt+1|t where

x̂xt+1,yt+1|t =

[
x̂xt+1|t
E[yt+1|t]

]
and

Σxt+1,yt+1|t =

[
Pt+1|t Cov

(
xt+1,yt+1|y1:t

)
Cov

(
yt+1,xt+1|y1:t

)
Var

(
yt+1|y1:t

) ]
.

So
E[yt+1|t] = E

(
yt+1|y1:t

)
= E (Cxt+1 + vt+1|y1:t) = Cx̂t+1|t

Cov
(
xt+1,yt+1|y1:t

)
= E

((
xt+1 − x̂t+1|t

) (
yt+1 − x̂yt+1|t

)T
|y1:t

)
= E

((
xt+1 − x̂t+1|t

) (
Cxt+1 + vt+1 − Cx̂t+1|t

)T |y1:t

)
= E

((
xt+1 − x̂t+1|t

) (
xt+1 − x̂t+1|t

)T |y1:t

)
CT

= Pt+1|tC
T

Cov
(
yt+1,xt+1|y1:t

)
= Cov

(
xt+1,yt+1|y1:t

)T
= CPT

t+1|t = CPt+1|t
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Var
(
yt+1|y1:t

)
= E

((
yt+1 − x̂yt+1|t

)(
yt+1 − x̂yt+1|t

)T
|y1:t

)
= E

((
Cxt+1 + vt+1 − Cx̂t+1|t

) (
Cxt+1 + vt+1 − Cx̂t+1|t

)T |y1:t

)
= CPt+1|tC

T +R

The last derivation is similar to the one for Pt+1|t so it’s not repeated. Let

K = Cov
(
xt+1,yt+1|y1:t

)
Var

(
yt+1|y1:t

)−1
= Pt+1|tC

T
(
CPt+1|tC

T +R
)−1

= APt|tA
TCT

(
CAPt|tA

TCT +R
)−1

and we call K the Kalman gain matrix. Note that the computation of K doesn’t require a new observation,
so it can be precomputed in next observation is acquired. Next, to find p

(
xt+1|y1:t+1

)
= p (xt+1|yt+1,y1:t),

by the formula for conditional Gaussian distribution, we have

x̂xt+1|t+1
= x̂t+1|t + Cov

(
xt+1,yt+1|y1:t

)
Var

(
yt+1|y1:t

)−1 (
yt+1 − x̂yt+1|t

)
= Ax̂t|t +K

(
yt+1 − CAx̂t|t

)
Pt+1|t+1 = Pt+1|t + Cov

(
xt+1,yt+1|y1:t

)
Var

(
yt+1|y1:t

)−1
Cov

(
yt+1,xt+1|y1:t

)
= APt|tA

T +Q+KCAPt|tA
T .

We are done here for the derivation.

Complexity

Let’s look at the complexity of one Kalman Filtering step.

Let x ∈ RNx , y ∈ RNy and assume dense matrix P and dense matrix A, computing

Pt+1|t = APt|tA
T +GQGT

takes O(N2
x) time. And pre-computing the Kalman Gain Matrix

kt+1 = Pt+1|tC
T (CPt+1|tC

T +R)−1

takes O(N3
y ) time. Therefore the total complexity of Kalman Filter is max(O(N2

x), O(N3
y )). Because of its

high complexity, Kalman Filter is not widely used today.

3.4 Rauch-Tung-Striebel smoother

RTS smoother is an algorithm to compute optimal latent state distributions using all observations from time
0 to time T . That is we want to compute p (xt|y1:T ) for all 0 < t ≤ T .

The algorithm has two steps

• Forward inference (exactly same process as Kalman Filter)

• Backward inference
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The backward step starts from time T . That is we start with p (xT |y1:T ), which is the last latent state
distribution computed by forward inference. Next we update previous latent states with the following
recursive relationship:

x̂t|t = x̂t|t + Lt

(
x̂t+1|t − x̂t+1|t

)
Pt|t = Pt|t + Lt

(
Pt+1|t − Pt+1|t

)
LT
t

where

Lt = Pt|tA
TP−1t+1|t.

We are basically trying to get better knowledge of the current latent state by using information in the future
up to time T . We treat p (xt|y1:t) and p (xt+1|y1:t) as the base and hope to improve the first distribution by
introducing p (xt+1|y1:T ), a “better truth” than yt+1, which is used in the forwarding inference. p (xt+1|y1:T )
is better because it’s a snapshot of all future information giving the linear Markov process assumption, while
yt+1 is just one observation.

Derviation of Backward Inference

First, we calculate the joint distribution of xt and xt+1. Since we have x̂t+1|t = Ax̂t|t, we know that

Cov (xt,xt+1|y0:t) = E
[(
xt − x̂t|t

) (
xt+1 − x̂t+1|t

)
|y0:t

]
= Σt|tA

T

Therefore we have

p (xt,xt+1|y0:t) ∼ N
([

x̂t|t
x̂t+1|t

]
,

[
Pt|t Pt|tA

T

APt|t Pt+1|t

])

We can obtain all the variables after a forward Kalman filtering pass. Now we move to the backward
computation. where we want to compute p (xt|xt+1,y0:t).

E
[
xt|xt+1|y0:t

]
= x̂xt|t + Pt|tA

TP−1t+1|t
(
xt+1 − x̂t+1|t

)
= x̂xt|t + Lt

(
xt+1 − x̂t+1|t

)

Var
[
xt|xt+1|y0:t

]
= Pt|t − Pt|tA

TP−1t+1|tAPt|t

= Pt|t − LtP
−1
t+1|tL

T
t

Since xt is conditional independent of yt+1, ..., yT given xt+1, we have

E [xt, xt+1|y0, . . . , yT ] = E [xt, xt+1|y0, . . . , yt]
= x̂t|t + Lt

(
xt+1 − x̂t+1|t

)
V ar [xt, xt+1|y0, . . . , yT ] = V ar [xt, xt+1|y0, . . . , yt]

= Pt|t − LtP
−1
t+1|tL

T
t
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By law of total expectation and law of total variance, we can get:

x̂t|T = E [xt|y0, . . . , yT ]

= E [E [xt|xt+1, y0, . . . , yT ] |y0, . . . , yT ]

= E
[
x̂t|t + Lt

(
xt+1 − x̂t+1|t

)
|y0, . . . , yT

]
= x̂t|t + Lt

(
xt+1|T − x̂t+1|t

)
Pt|T = Pt|t + Lt

(
P−1t+1|T − P

−1
t+1|t

)
LT

4 Review of Mathematical Background

4.1 Multivariate Gaussian

Multivariate Gaussian Density: Let’s recall the pdf for a Gaussian distribution is of the following form:

p(x|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}

If we represent a multivariate Gaussian distribution in the following block form:

p(

[
x1

x2

]
|µ,Σ) = N(

[
x1

x2

]
|
[
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

]
)

Then we can represent the marginal probability and conditional probability with µ and Σ:

p(x2) = N(x2|mm
2 ,V

m
2 ) p(x1|x2) = N(x1|m1|2,V1|2)

mm
2 = µ2 m1|2 = µ1 + Σ12Σ−122 (x2 − µ2)

Vm
2 = Σ22 V1|2 = Σ11 − Σ12Σ−122 Σ21

4.2 Matrix Inversion

It is also useful to remember the matrix inversion for block matrix. In particular, if we consider the following
block matrix M :

M =

[
E F
G H

]

We can derve the inverse of matrix M−1 as follows:

M−1 =

[
E F
G H

]−1
=

[
I 0

−H−1G I

] [
(M/H)−1 0

0 H−1

] [
I −FH−1
0 I

]
=

[
E−1 + E−1F (M/E)−1GE−1 −E−1F (M/E)−1

G− (M/E)−1GE−1 (M/E)−1

]−1
We also get the matrix inverse lemma:(

E − FH−1G
)−1

= E−1 + E−1F
(
H −GE−1F

)−1
GE−1
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4.3 Some Matrix Algebra

Finally we look at some useful tricks about trace and derivative of the matrix. The trace of a matrix is
defined as follows:

tr [A] =
∑
i

aii

Cyclical permutations:

tr [ABC] = tr [CAB] = tr [BCA]

Taking derivatives of a trace:

∂tr [BA]

∂A
= BT

∂tr
[
xTAx

]
∂A

=
∂tr

[
xxTA

]
∂A

= xxT

In addition to trace, it is also important to know how to take the derivatives of the determinants:

∂log|A|
∂A

= A−1


